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The signaling of Receptors for Advanced Glycation End Products 
(RAGE) results in inflammation and tissue remodeling, and has been 
implicated in several human diseases, including cardiovascular disease 
[1-3]. Soluble RAGE (sRAGE) encompassing the entire ectoportion 
of RAGE, but lacking the membrane anchor and cytosolic signaling 
domain, functions as a decoy that counteracts RAGE-mediated 
inflammatory signaling by competing for RAGE ligands and dampening 
the subsequent inflammation and tissue remodeling [4]. RAGE/sRAGE 
is known to be modified by N-linked glycosylation at two locations 
of the ligand binding V ectodomain [5], and such modification has 
been shown to be important for RAGE bioactivity [6,7]. Recombinant 
sRAGE has been generated and tested in several disease models in mice 
[8-10] or rats [11], and the results have shown a promise for future 
clinical applications. However, in these studies, recombinant sRAGE 
was produced in the fall armyworm (Spodoptera frugiperda) cell line 
sf9 via a baculovirus vector [8-11], rather than in mammalian source, 
making immunogenicity as well as bioactivity an issue. 

Although glycoproteins expressed in insect and mammalian 
cells are both glycosylated, their glycoforms are different. Insect 
cells predominantly produce paucimannose N-glycans, whereas 
mammalian cells can produce highly diverse N-glycoforms including 
paucimannose, hybrid, and most often, complex type of glycans [12]. 
These different forms of post-translational modification may impact a 
therapeutic glycoprotein in the following aspects. 

First, glycoforms act as antigens in vivo. Insect cell-originated 
N-glycoforms are immunogenic in mammalian system. Currently,
major regulatory authorities (FDA, EMEA) require that therapeutic
glycoproteins to be produced in mammalian cell lines such as Chinese
Hamster Ovary (CHO) cells and Human Embryonic Kidney cells
(HEK293), or in mammalian sources via transgenic animals to avoid
adverse side-effects and biosafety concerns [13].

Second, glycoforms contribute to bioactivities or in vivo duration of 
a glycoprotein, directly affecting its therapeutic efficacy [14]. A typical 
example is recombinant human Erythropoietin (EPO), a therapeutic 
glycoprotein used for the treatment of anemia-associated diseases. 
Proper glycosylation significantly enhances EPO bioactivity and 
duration of action in vivo [15]. Other examples include recombinant 
TNK-tissue plasminogen activator [16], and Soluble Intercellular 
Adhesion Molecule-1 (sICAM-1) [17].

Although direct evidence regarding N-glycoform modifications 
and sRAGE in vivo efficacy is still lacking, results from several studies 
have shown that N-glycoform modifications may contribute to 
RAGE signaling capacity and sRAGE activity in vitro. Genetic studies 
have shown that patients with a G82S polymorphism in AGER (the 
gene encoding RAGE) are prone to the development of diabetes [6]. 
Subsequent biochemical studies demonstrated that this polymorphism 
enhances RAGE N-glycosylation at residue N81, and affects RAGE 
signal transduction [7]. Since RAGE and sRAGE share the ectodomains, 
it can be inferred that sRAGE with proper N-glycoform modifications 
may interact with RAGE ligands more effectively, and thus has higher 
blocking capacity. Indeed, earlier studies have also shown that sRAGE 
purified form animal lung tissues is more effective than that of sf9 cell-

originated sRAGE to block RAGE ligand-induced vascular smooth cell 
migration in vitro. Recently, Srikrishna and colleagues showed that a 
small portion of sRAGE from lung tissue, modified by carboxylated 
N-glycoforms, has higher bioactivity to block NF-κB in vitro than
that of sRAGE produced in sf9 cells [18]. These studies support the
general concept that a proper N-glycoform modification is critical
for a glycoprotein’s bioactivity and therapeutic efficacy also applies to
sRAGE.

Furthermore, the reported dosage of sf9 cell-originated sRAGE is 
relatively high, i.e. 100 µg/mouse/day for mice [8-10], or 0.5 mg/kg 
body weight for rats [11]. In addition, either mouse or rat models used 
for blocking studies required daily sRAGE administration to achieve 
desired therapeutic outcomes. These suggest that the bioactivity of sf9 
cell-originated recombinant sRAGE is relatively low. Significantly, a 
recent report showing that a similar dose of sf9 cell-originated sRAGE 
(5 µg/g body weight, assuming an average lab mouse weighs 20 g) elicits 
monocyte inflammatory reactions in mice [19]. This observation further 
begs the question of whether it is apt to use sf9 cell-originated, rather 
than the mammalian cell-originated sRAGE with proper N-glycoform 
modifications in animal studies. 

In our opinion, the specific N-glycoform modification of sRAGE 
matters. Systematic studies of the bioactivity and assessment of the 
in vivo efficacy of mammalian cell-originated recombinant sRAGE in 
animal models will test this concept. Information gleaned from these 
studies will render a more adequate assessment of sRAGE’s therapeutic 
potential, including possible reduction of administrated dosage and 
administration frequency, owing to higher bioactivity and/or in vivo 
efficacy that are resulted from using a proper N-glycoform modified 
form. These studies will also provide a basis for further development of 
sRAGE as a candidate pharmacological glycoprotein for future clinical 
applications.
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