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Introduction
Cardiac fibrosis is a significant health issue and a common 

pathological process in cardiac disease that eventually leads to heart 
failure [1]. Both experimental and clinical data have shown that 
formation of fibrotic scar tissue increases cardiac stiffness, whereas 
regression of fibrosis improves cardiac function [2,3]. Several categories 
of drugs have been developed to treat cardiac fibrosis and cardiac 
failure in clinics. However, there remains a major gap in elucidating 
the mechanisms of cardiac fibrosis and its association with heart 
failure, which is still the leading cause of deaths in the United States 
[4]. Therefore, the discovery of novel molecular targets is essential 
for improving patient outcomes. The Na/K-ATPase is an important 
transmembrane protein and is critical for maintaining ion homeostasis 
across the cell membrane. In the past 20 years, studies have revealed 
that the Na/K-ATPase can also complex with neighboring proteins 
and function as a signaling transducer that regulates a variety of 
signaling events such as the activation of Src kinase and NFκB, and the 
generation of reactive oxygen species [5]. Recent studies have further 
demonstrated that prolonged activation of Na/K-ATPase signaling 
promotes cardiac fibroblast proliferation, increased collagen synthesis, 
and contributes to the pathogenesis of cardiac fibrosis in different 
animal models. Therefore, components of the Na/K-ATPase signaling 
pathway can be novel therapeutic targets in the treatment of cardiac 
fibrosis and related cardiac diseases. This review will discuss the recent 
developments in the treatment of cardiac fibrosis with a focus on the 
findings that Na/K-ATPase signaling complex is a novel target for drug 
development.

Mechanisms of Cardiac Fibrosis
Cardiac fibrosis can be categorized into two types: reactive 

fibrosis and replacement fibrosis (also called reparative fibrosis) [6]. 
Replacement fibrosis often occurs after Myocardial Infarction (MI) 
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when large numbers of cardiac myocytes undergo necrosis. Myocyte 
necrosis triggers a series of events including immune cell infiltration, 
inflammation, new vessel formation, removal of necrotic tissue, 
and eventually the replacement of damaged tissue with collagen-
dominated fibrotic tissue that prevents cardiac muscle from rupture 
[7]. In addition to scar formation at the infarcted area, the remote non-
infarcted regions can develop fibrosis in the interstitial spaces, which is 
referred to as reactive fibrosis or interstitial fibrosis [6,8-10]. Interstitial 
fibrosis can also occur in disease conditions that often involve the 
activation of Renin-Angiotensin-Aldosterone System (RAAS) [11-13], 
endothelin-1 [14-16], TGF-β [17-19], TNF-α [20,21], NFκB [22,23], or 
other profibrotic signaling pathways [24,25]. 

Cardiac fibroblast proliferation and differentiation into 
myofibroblasts are important processes in both types of cardiac 
fibrosis [1,26,27]. Myofibroblasts, the activated cardiac fibroblasts, 
are considered as the major source that secret collagen and other 
ECM proteins during the formation of fibrosis [1,28,29]. Molecular 
markers such as α-smooth muscle actin fibroblast-specific protein 1 
and periostin were used to label myofibroblasts [1,30-32]. However, 
these molecular markers may also be expressed in epicardium, vascular 
smooth muscle, pericytes, endothelial cells, and cardiac muscle cells 
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[1]. Additionally, the origin of myofibroblasts that accumulate during 
fibrosis formation remains elusive. Resident cardiac fibroblasts are 
considered the major source but other cell types such as vascular 
endothelial cells, perivascular cells, and progenitor cells have been 
shown to differentiate into myofibroblasts [1]. 

The RAAS and TGF-β signaling pathways are major factors that are 
involved in the activation of cardiac fibroblasts and formation of tissue 
fibrosis. Administration of angiotensin II or aldosterone has been 
shown to stimulate collagen and other ECM protein expression and 
secretion from cardiac fibroblasts [33], while inhibition of RAAS by 
Angiotensin Converting Enzyme (ACE) inhibitors or angiotensin type 
I receptor blockers (ARBs) attenuates cardiac fibrosis and improves 
cardiac function [34-36]. Spironolactone, an antagonist of aldosterone 
is also a potent drug in the treatment of cardiac remodeling that is 
related with cardiac fibrosis [37]. In the event of an MI, activation 
of NFκB was observed in different cells and subsequently drives the 
expression of a large panel of genes [22,23]. These genes produce 
proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) 
and interleukin proteins that subsequently help recruit leukocytes 
and initiate the inflammation responses [7]. Once the necrotic tissue 
is cleared by leukocytes, neutrophils, and monocytes, inflammation 
become suppressed and fibrotic tissue formation follows. Several 
members of the TGF-β family are involved in the regulation of 
inflammation and fibrosis [18,38]. The TGF-β1 signaling pathway is 
an important component in the switch from inflammation to fibrosis 
[39]. The initial reparative fibrosis is beneficial to prevent heart wall 
rupture, but if this persists, it will eventually cause cardiac remodeling 
and reduction in cardiac function. In chronic conditions, activation of 
RAAS, TGF-β, and other pro-fibrotic signaling pathways can induce 
interstitial fibrosis in the heart and other organs [13,18,24,40,41]. 
Cell proliferation promoters such as non-receptor tyrosine kinases 
were also reported to increase organ fibrosis [42-44]. In addition to 
these traditional signaling pathways, epigenetic regulation has drawn 
attention for their regulating role in cardiac fibrosis. Numerous 
microRNAs were found to be either pro- or anti-fibrotic [45]. Some 
anti-fibrotic microRNAs such as the miR-29 mciroRNA family directly 
target the mRNA of several collagen isoforms, fibrilin 1, elastin, and 
matrix metalloprotease 2 (MMP2) and thus prevent overexpression of 
these ECM proteins [46-51]. When the anti-fibrotic microRNAs are 
reduced in disease state, syntheses of collagen and other ECM protein 
increase and promoting the development of fibrosis. The understanding 
of microRNA biosynthesis has been greatly advanced in the past decade 
and represents a promising area for the development of reagents that 
regulate specific microRNA expression and prevent organ fibrosis. 

Treatment Strategies for Cardiac Fibrosis
Extensive experimental studies using animal models have revealed 

important pathways and identified specific molecular markers as targets 
for treatment of cardiac fibrosis. However, the clinical translation 
of these findings are limited attributing to the lack of validated non-
invasive measurement of cardiac fibrosis in patients. Serum levels of 
procollagen type I C-terminal peptide (PCIP) and procollagen type III 
N-terminal peptide (PIIINP) were often used as secondary surrogates 
for assessment of tissue fibrosis [52], but their correlation to cardiac 
fibrosis and cardiac function has not been validated in the clinical 
studies. Echocardiography has also been used for assessment of cardiac 
fibrosis with diastolic dysfunction [53-55]. More accurate methods 
using cardiac resonance imaging (CMR) and T1 mapping have been 
recently used clinically to evaluate cardiac fibrosis [56,57]. These new 
technologies allow for a more direct measurement of cardiac fibrosis 

and assessment of the drug effects in clinical studies. Several categories 
of drugs have now been evaluated for their effect on reducing cardiac 
fibrosis and improving overall cardiac function in certain small size 
clinical trials. 

ACE inhibitors are the most commonly used drugs for treatment of 
hypertension and heart failure [35,36,58,59]. Enalapril was discovered 
as an ACE inhibitor that decreases levels of angiotensin II and leads to 
less vasoconstriction and lower blood pressure [35]. It was shown that 
enalapril can reduce the risk of death by 16% in patients with reduced 
ejection fraction [35,36]. ARBs have also been shown to reduce cardiac 
fibrosis in clinical trials [60]. In addition, animal models with pressure 
overload demonstrated that hypertension was able to induce cardiac 
fibrosis and lowering blood pressure attenuated cardiac fibrosis 
[61]. However, a clinical trial comparing different anti-hypertensive 
drugs showed that only the ACE inhibitor lisinopril reduced cardiac 
fibrosis measured by collagen volume fraction in tissue biopsies at 
6 months after treatment, but hydrochlorothiazide failed to do so 
[3]. Spironolactone, an antagonist of aldosterone (another major 
component of RAAS), has also been shown to have potent effects in 
reducing cardiac fibrosis in clinical studies using serum levels of PICP 
and PIIINP as surrogate markers of fibrosis [62-64]. In addition to 
targeting RAAS, other categories of drugs including vasodilators, anti-
inflammatory and anti-oxidative agents have been tested clinically for 
their effects on reducing cardiac fibrosis [65].

TGF-β and its downstream signaling components Smad proteins 
are main regulators of collagen synthesis [18]. TGF-β is synthesized 
in many cell types as a large latent complex, which can be activated 
by a variety of molecules. Thrombospondin-1 (TSP-1) can disrupt the 
interaction between the latency-associated peptide (LAP) and TGF-β 
resulting in activation of TGF-β. Active TGF-β binds to its receptor 
and induces expression of Smad 2/3 and phosphorylation of Smad 
4, which are transcription factors [18,66]. Activation of the TGF-β 
signaling pathway enhances collagen types I and III synthesis, decrease 
collagenase expression, and induces integrin expression [67-69]. TGF-β 
was also a common pathway that regulates fibrosis-related microRNA 
expression [70,71]. Drugs targeting TGF-β and Smad proteins have 
been under active development. The Smad 3 inhibitor Halofuginone 
was shown to ameliorate radiation-induced fibrosis in mice [72]. A 
prespecified and pooled analysis of phase 3 clinical trials also indicated 
that the TGF-β inhibitor pirfenidone significantly reduced all-cause 
mortality and pulmonary fibrosis compared to the placebo group [73]. 

Using a combination of drugs from different categories has been 
shown to improve the treatment of heart failure. It was found that 
addition of spironolactone on top of the standard ACE inhibitor 
treatment decreased frequency of hospitalization due to worsened heart 
failure by 35% compared to ACE inhibitor treatment alone. The death 
rate was also decreased from 46% to 35% in spironolactone plus ACE 
inhibitor treatment [74]. Since aldosterone is a downstream component 
of RAAS, blocking aldosterone by spironolactone in addition to ACE 
inhibition was considered unnecessary and may predispose patients to 
side effects such as serious hyperkalemia [75]. However, studies found 
that ACE inhibition can only transiently decrease the production of 
aldosterone [76,77]. Spironolactone was also found to function as an 
antagonist of Na/K-ATPase signaling and attenuates cardiac fibrosis 
in experimental uremic cardiomyopathy [78]. Another important 
example of drug combination in the treatment of heart failure is 
the usage of LCZ696, which is composed of the neprilysin inhibitor 
LBQ657 and valsartan, an ARB drug [79]. A recent clinical study [80] 
found that LCZ696 reduced the hazard ratio of all-cause mortality and 
cardiovascular specific mortality compared to enalapril. Neprilysin 
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is a neutral endopeptidase, which degrades natriuretic peptides, 
bradykinin, and adrnomedullin [81-83]. Inhibition of neprilysin may 
increase the level of natriuretic peptides and thus counter act with the 
sodium retention and volume overload [83]. In a related study it was 
also found that the component of neprilysin inhibitor in LCZ696 had 
no effect on cardiac fibrosis, while the component of ARB in this drug 
reduces both cardiac fibrosis and hypertrophy [79]. 

Na/K-ATPase as a Novel Target for Cardiac Fibrosis
Despite the current advances in treatments, there remains a 

major gap in elucidating the mechanisms of cardiac fibrosis and its 
association with heart failure. Novel pathways and potential drug 
targets related with tissue fibrosis have been actively studied. A novel 
signaling pathway, Na/K-ATPase signaling, has been demonstrated in 
experimental animal models to contribute to the formation of cardiac 
fibrosis [84-90]. Reagents developed to target the components of Na/
K-ATPase signaling have shown promising results in ameliorating 
cardiac fibrosis and improving cardiac functions [91-94].

Na/K-ATPase is a transmembrane protein that was discovered in 
1957 by Dr. Skou [95]. It is a major ion transporter that helps maintain 
homeostasis of Na+ and K+ concentrations across the cell membrane by 
hydrolyzing ATP. The Na/K-ATPase α subunit has 10 transmembrane 
domain and 3 major cytosol domains namely actuator domain (A 
domain), nucleotide binding domain (N domain) and phosphate 
binding domain (P domain) [96,97]. Digitalis compounds, also called 
Cardiotonic Steroids (CTS), specifically bind to the extracellular 
portion of Na/K-ATPase α subunit and cause a conformational change 
which inhibits the ion transporting activity and ATP hydrolysis [98]. 
In addition to its canonical ion transporting function, the Na/K-
ATPase was found to be able to associate with other signaling proteins 
and function as a signal transducer [5,99,100]. Treatment of cells with 
Na/K-ATPase ligands induces activation of Src, PI3K, NFκB, Erk, 
PLC and other signaling pathways as well as the generation of reactive 
oxygen species [101-104]. We and others have demonstrated that 
activation of Src, PI3K and NFκB signaling pathways may stimulate 
cell proliferation and protect cells from death [103,105,106], whereas 
prolonged activation of these signaling pathways in certain disease 
models was demonstrated to cause cardiac hypertrophy and fibrosis 
[84-90]. Digitalis drug such as digoxin have been used for treatment 
of congestive heart failure for centuries [107-109]. The endogenous 
digitalis-like compounds were only recognized a few decades ago 
and their physiological and pathological roles are just starting to be 
appreciated. It was found that ouabain and Marinobufagenin (MBG) 
exist in human blood with the same structure as plant-derived and 
toad gland-derived digitalis compounds, respectively [110-114]. The 
elevation of circulating levels of these endogenous compounds was 
reported in heart failure patients and was correlated with the severity 
of heart dysfunction [111,115-117]. Other diseases such as renal failure 
[118], preeclampsia [119], myocardial ischemia/infarction [120,121], 
and diabetes mellitus [122,123] were also observed in association 
with elevated levels of endogenous compounds in human plasma 
samples. However, the accurate measurement of endogenous digitalis 
compounds in human samples still faces big challenges [124]. 

Kennedy [125] showed that both 5/6th Partial Nephrectomy 
(PNx), which increase endogenous MBG levels, and MBG perfusion 
caused significant cardiac fibrosis, suggesting that digitalis compounds 
binding to Na/K-ATPase contributes to uremic cardiomyopathy. It 
has also been shown that immunization against MBG attenuated PNx-
induced cardiac fibrosis [125]. Elkareh [90] later demonstrated that 
MBG stimulate procollagen-1 synthesis in rat cardiac fibroblasts and in 

MBG-perfused rat heart tissue. Interestingly, this study demonstrated 
that although it is required for MBG or PNx induced cardiac fibrosis, 
TGF-β and its downstream component Smad 2/3 or Smad 4 were 
not activated by MBG. The increased procollagen synthesis is rather 
associated with the activation of Src kinase and increased reactive oxygen 
species [90]. Further study [126] showed that MBG induces activation 
of PKCδ in a pathway involving phosphorylation of Friend leukemia 
integration-1 (Fli-1). Fli-1 is a transcription factor that negatively 
regulates collagen mRNA synthesis, while phosphorylation of Fli-1 can 
cause degradation of Fli-1 and subsequently induces collagen synthesis 
[127]. A recent study from our laboratory demonstrated that ouabain 
and MBG decrease miR-29b-3p, an anti-fibrotic microRNA, and led 
to an increase in collagen synthesis through a Src-related signaling 
pathway in cardiac fibroblasts [128]. These pathways may work in 
concert to stimulate collagen synthesis and fibrosis formation in 
response to digitalis compound treatment or in conditions of chronic 
renal dysfunction.

Since rodents express an ouabain-insensitive form of the Na/K-
ATPase α1 subunit, Lingrel and his colleagues made a mutant mouse 
strain, in which its Na/K-ATPase α1 subunit was mutated to be 
sensitive to ouabain. These mutant mice and the wild type mice were 
then subjected to Transverse Aortic Coarctation (TAC). It was shown 
that TAC caused much more severe and earlier cardiac hypertrophy 
and fibrosis in mutant mice compared to that in wild type mice 
[85]. In the same study, they found that treatment with Digibind, a 
Fab fragment of an ovine anti-digoxin antibody, could prevent the 
development of cardiac fibrosis and hypertrophy in these animals. A 
more recent study demonstrated that a digitalis compound potentiates 
the myofibroblast differentiation through increased COX-2 expression 
and activation of PKA [129]. These studies clearly showed that Na/K-
ATPase and its ligands are involved in the formation of cardiac fibrosis 
and the development of cardiomyopathy. 

As the novel non-canonic role of Na/K-ATPase as a signaling 
transducer has been recognized, more evidences suggest that Na/K-
ATPase signaling components can be important molecular targets for 
drug development [102]. Both passive immunization against MBG 
[90,91] and administration of anti-MBG or anti-digoxin antibodies 
[85,94,130] have been shown to attenuate tissue fibrosis in experimental 
models of renal and cardiac disease. A recent study by Haller [92] 
showed that rapamycin, an inhibitor of Akt/mTOR pathway, can 
reduce the synthesis of MBG in rats and block PNx-induced cardiac 
fibrosis. In addition, a novel patent product called NaKtide (US8981051 
B2) was developed based on the discovery that Na/K-ATPase can 
directly interact with Src and keep Src in inactive states [131-133]. 
Na/K-ATPase binds with Src through two domain interactions, namely 
the A domain of Na/K-ATPase binds to the SH2 domain of Src, while 
the N domain of Na/K-ATPase interact with the kinase domain of Src. 
When digitalis compounds bind to Na/K-ATPase, the conformation 
changes cause the dissociation of Src kinase domain from the N 
domain of Na/K-ATPase and subsequently activates Src. The NaKtide 
is a peptide product that contains a 20-amino acid sequence derived 
from the N domain of Na/K-ATPase α1 subunit. By adding a leading 
sequence, it is then called pNaKtide. The pNaKtide can enter into cells 
and largely distribute on the plasma membrane [131]. Treatment of 
pNaKtide is hypothesized to disrupt the direct interaction between 
Na/K-ATPase and Src, and therefore Na/K-ATPase can no longer 
transduce the extracellular signal and activate downstream signaling 
pathways when digitalis compounds bind to it. In vitro study showed 
that pNaKtide can inhibit Src tyrosine 418 phosphorylation when 
directly incubated with purified Src [131]. Our recent studies found 
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that pNaKtide can block the ouabain-induced decrease in anti-fibrotic 
microRNA miR-29b-3p in cardiac fibroblasts [128] and significantly 
reduce cardiac fibrosis in mice subjected to PNx surgery by inhibiting 
the amplification of reactive oxygen species [93]. The latter study also 
showed that pNaKtide not only prevents PNx-induced cardiac fibrosis 
but also reduces cardiac fibrosis if administered after cardiac fibrosis 
already developed, suggesting a reversing effect in cardiac fibrosis 
[93]. However, the detailed molecular mechanism by which pNaKtide 
reduces cardiac fibrosis remains to be further explored. Even though 
Src activation has been indicated to be related with increased tissue 
fibrosis, blocking Src activation with different methods has yield 
inconsistent results in reducing tissue fibrosis [134-136]. It will be 
interesting to test if pNaKtide exerts its effect on cardiac fibrosis solely 
through inhibition of Src, or if additional mechanisms are involved. A 
direct comparison between pNaKtide and generic Src inhibitors will 
also be an interesting area of investigation. 

Conclusion
In summary, our understanding of the pathology of cardiac 

fibrosis as well as other organ fibrosis has been greatly advanced. Some 
common mechanisms and major regulators were discovered and tested 
in experimental models and in clinical trials which showed promising 
results in reducing cardiac fibrosis and related cardiac disease. However, 
heart failure is still the leading cause of death worldwide. Novel drugs 
and novel strategies such as more specific targets, or a combination 
of different drugs should be explored to more effectively reduce the 
cardiac fibrosis and improve cardiac function. 
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