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Abstract

Pluripotent stem cells mainly refer to Embryonic Stem (ES) cells and induced Pluripotent Stem (iPS) cells. These
two pluripotent stem cell types show significant similarities in their global histone modifications, gene expression
patterns, and differentiation potentials. ES and iPS cells hold great promise in the field of regenerative medicine
because they can give rise to all three germ layers, including cardiac lineages. Transplantation of ES cells and iPS
cell-derived cardiomyocytes (ES- or iPS-CMs) has emerged as a promising treatment for ischemic heart disease.
Stem cell grafts may be implanted in areas of myocardial infarction to restore cardiac function by regenerating
cardiomyocytes and inducing neovascularization. The objective of this review is to briefly present the current
research in the field of repairing infarcted myocardium using ES cells and iPS cells.

Introduction
Heart failure is a leading cause of morbidity and mortality

worldwide [1]. Although percutaneous coronary interventions can
effectively treat myocardium infarction (MI), the management of
ventricular remodeling and chronic ischemic cardiomyopathy after an
MI still remains as a challenge. Stem cell therapy is a promising new
approach to restore cardiac function and prevent ventricular
remodeling after an acute MI. However, the therapeutic effects of stem
cells in heart disease have been limited. Furthermore, it is not clear
whether adult stem cells, such as skeletal myoblasts [2], bone marrow
mononuclear cells, mesenchymal stromal cells, and mesenchymal stem
cells (MSCs) (from bone marrow, peripheral blood, and adipose
tissue), can differentiate into cardiac muscle cells and fibers after
transplanted into MI heart. The current thought is that the primary
mechanisms by which adult stem cells can improve heart function
after an MI involve paracrine effects, such as the release of cytokines,
chemokines, and growth factors, which inhibit apoptosis and fibrosis
formation, enhance contractility, and activate endogenous
regenerative mechanisms through endogenous circulating or cardiac
resident stem cells [3,4].

ES and iPS cells are similar in their capacity to differentiate into
cardiac lineages and, therefore, improve heart function after MI.
Hence, these two cell types hold great promise in cardiac regenerative
medicine.

ES Cells and Repair of Myocardial Infarction
The most well-known type of pluripotent stem cell is the ES cell,

which was first isolated in 1981 from mouse blastocysts by two
independent groups [5,6], and again in 1998 from human blastocysts
by Thomson’s group [7]. ES cells possess the ability of self-renewal,
indefinite proliferation and differentiation into all the cell types found
in the body. Human ES (hES) cells have indisputable cardiomyogenic
abilities and have been extensively investigated for the repair of heart
failure by implantation into the heart. The three most frequently used
methods to differentiate ES cells into functional cardiomyocytes are
[1] co-culture with mouse visceral endoderm-like stromal cells [2,8],

spontaneous embryoid body (EB) differentiation in suspension and
monolayer differentiation [3,9,10]. In addition, cytokines and small
molecules can enhance cardiac differentiation [11-13].

Several groups have postulated the possibility of regenerating the
myocardium by transplanting undifferentiated ES cells, ES-derived
cardiac progenitor cells, such as Flk1 positive cells, islet1 positive cells,
or ES-CMs. However, the tumorigenic potential of transplanted ES
cells was proved to be a hindrance. Studies on transplantation of hES-
CMs in mice, rats, and guinea-pigs [10,14,15] have shown that hES-
CMs are safe and survive in the heart and improve heart function in
areas of MI. One current challenge is to derive phenotypically stable
cardiac cell populations from human ES cells in numbers sufficient for
repair of MI. Recent evidence has shown that more than one billion
hES-CMs cells can be produced and cryopreserved with good viability
[16]. These cryopreserved hES-CMs have been transplanted via intra-
myocardial delivery into a non-human primate monkey heart model
of myocardial ischemia, and they generated extensive
remuscularization in the infarcted heart after reperfusion. The grafts
were perfused by host vasculature, and electromechanical junctions
formed between graft and host cardiomyocytes within 2 weeks of
engraftment. Importantly, there was electromechanical coupling as
indicated by the synchronization of the grafts’ regular calcium
transients to the host’s electrocardiogram. Moreover, grafting of
hESC-CMs attenuated remodeling process of MI heart [14,16,17].

Although hES cells have shown the greatest cardiac differentiation
potential, their clinical use has been hampered by their tumorigenic
potential, their immunogenic properties, and the ethical issues related
to their embryonic origin. For these reasons, the discovery of iPS cells,
which closely resemble ES cells but can be easily derived from adult
cells, has provided an exciting alternative for bypassing these ethical
and immunogenic concerns [18-20].

iPS Cells and Repair of Myocardial Infarction
In 2006, Takahashi and Yamanaka [8] were the first to reprogram

somatic cells into ES-like pluripotent stem cells by introducing 4 key
pluripotent factors: Oct-3/4, Sox2, c-Myc, and Klf4. The
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reprogrammed cells were called iPS cells because they resembled ES
cells in morphology and developmental potential. For this
groundbreaking contribution, Yamanaka et al. were rewarded the
Nobel Prize in 2012. Similar reprogramming was soon accomplished
in various mouse and human tissues by transducing a defined set of
viral-transcription factors [21-23]. However, viral-transcription factors
integrate into the host genome and may lead to tumorigenesis. To
avoid this serious complication, non-viral integration methodologies
or virus-free transfection were developed [24-28]. Recently, iPS cells
have been successfully generated by the induction of only small-
molecules [29]. These non-viral integration methodologies can be very
useful for generating iPS cells for safe clinical applications.

iPS cells, similar to ES cells, show unlimited self-renewal and
demonstrate pluripotency by giving rise to lineages of all three germ
layers. Further, iPS cells can be induced to differentiate into functional
cardiomyocytes, which are very similar to those generated from hES
cells. Human iPS (hiPS) cells can differentiate into cardiac cells with
nodal-, atrial-, and ventricular-like phenotypes that are responsive to
β-adrenergic stimulation [9,30], and display gene expression patterns
and electrophysiological properties similar to those of ES-CMs
[30-32]. When iPS cells were transplanted by intramyocardial delivery
into the infarcted hearts of immunocompetent mouse models, they
successfully differentiated into cardiomyocytes, smooth muscle cells,
and endothelial cells, and this resulted in significantly improved
cardiac function [33].

However, owing to their embryonic characteristics and viral
reprogramming factors, although transplanted undifferentiated iPS
cells contributed to the cardiac lineages in heart tissue, these engrafts
had the potential for tumorigenesis [33]. To bypass this serious
limitation, one strategy is that cardiac cells were derived from iPS cells
in vitro before implantation. These transplanted hiPS-CMs remained
within the infarcted heart and decreased cardiac remodeling after
ischemic damage. Importantly, no tumor formation has been reported.
This occurred despite the immature state of the cardiomyocytes
generated using current protocols [34]. One limitation of MI modeling
is that it requires high yields of phenotypically mature hiPS-CMS.
Unfortunately, the efficiency of the process of cardiac differentiation
from iPS cells is still low for cardiac regenerative medicine
applications. To increase the efficiency of hiPS-derived cardiac
differentiation, strategies of enhancing hES-CMs formation are being
investigated [13,35,36]. Alternative strategy is using non-viral
integration methodologies or virus-free transfection or small
molecules to generate iPS cells, which will be conducive to avoid
tumorigenesis through viral vector genomic DNA integration [24-29].

iPS-derived cardiac progenitors have been demonstrated to be an
another promising source for MI therapy. Cardiac progenitors have an
ability of proliferation and differentiation into cardiomyocytes,
smooth muscle cells and endothelial cells [37]. For example, iPS cell-
derived NK2 homeobox 5 (Nkx2-5) positive cardiac progenitors or iPS
cell-derived fetal liver kinase-1 (Flk-1)+ progenitor cells showed
multipotency and capable of differentiating into endothelial cells,
smooth muscle cells and cardiomyocytes. These cardiac progenitor
derived cardiomyocytes are capable of forming electrically and
mechanically coupled large-scale cell cultures with mature
electrophysiological properties in vitro [37,38]. In vivo, studies showed
that iPS cell-derived Flk-1 positive progenitor improved cardiac
function in a mouse model of acute MI [40]. Another type of iPS cell-
derived cardiac progenitor, LIM-homeobox transcription factor islet-1

(Isl1) positive cells were demonstrated to survive and to differentiate
into cardiac lineage after transplanted into MI hearts [41].

Long term survival and remain (Long term survival and
maintaining) of engrafts in MI heart have been the challenge. Recently,
three dimension (3D) tissue engineered have been (Recently, three
dimensional (3D) tissue has been engineered and) applied for
constructing tissue patch by seeding purified iPS-CMs for repairing
the post-MI heart. 3D tissue patch seeded hiPS-CMs were beating and
showed a cardiac muscle-like structure with anastomosing vessels with
the host's jugular arteries and veins after they were ectopically
transplanted to the neck portion of other rats [42]. Heart function of
MI mouse was significantly improved by injection into the infarct of
this PEG-fibrinogen (PF) scaffold seeded with iPS cells engineered to
secrete matrix metalloproteinase [9]. Therefore, survival and
integration of allografts in the ischemic heart can be significantly
improved with the use of bioengineered therapeutic cells [43].
Transplanting patched cardiac tissue may become a new treatment
option for heart failure.

In summary, there exist significant similarities between iPS cells
and ES cells, such as similar pluripotency, indistinguishable global
histone modification and gene expression patterns [19,44], and
advanced histocompatibility match. ES cells applications in cell
therapy have been promising, but ethical concerns have precluded the
cells’ use in clinical settings because they are derived from embryos.
iPS cells provided an exciting alternative to ES cells because iPS cells
closely resemble ES cells, can be easily derived from cells from adult
patients, and bypass these ethical and immunogenic concerns.
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