
Photonic Approach to Optimize Energy Consumption for On-chip Clos
Network
Deepalakshmi B1* and Maruthachalam G2

1Department of Applied Electronics, Arunai Engineering College, Tiruvannamalai, India
2Department of Electronics and Communication Engineering, Arunai Engineering College, Tiruvannamalai, India

*Corresponding author: Deepalakshmi B, Department of Applied Electronics, Arunai Engineering College, Tiruvannamalai, India, Tel: 04175 255 102; E-mail: 
maildeepu296@gmail.com

Received date: April 29, 2015; Accepted date: February 23, 2016; Published date: March 01, 2016

Copyright: © 2016 Deepalakshmi B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

To meet energy-efficient performance needs, the computation has positioned to parallel computer architectures,
such as chip multiprocessors (CMPs), internally interconnected via networks-on-Chip (NoC) to achieve increasing
communication needs. To accomplish scaling execution as center include increment to the hundreds future CMPs,
all things considered, will require elite, yet vitality productive interconnects. Silicon Nano photonics is a promising
swap for electronic on-chip interconnect for its high data transfer capacity and low inactivity, by the by, earlier
methods have required high static force for the laser and warm ring tuning. We propose novel Nano photonic NoC
(PNoC) design, upgraded for elite and force effectiveness. This paper makes three essential elements: a novel,
Nano photonic engineering which isolates the system into subnets for better productivity; an exclusively photonic, in-
band, appropriated discretion plan; and a channel sharing schematic are using the same waveguides and
wavelengths for intervention as information transmission. As a result the interconnection can be reduced latency
with increased throughput.

Keywords: Low power electronics; Multiprocessor interconnection
networks; Nanophotonics; Optical interconnects; Ring resonators

Introduction
The fast hybrid parallel architecture, such as chip multiprocessors

(CMPs) have prominent to address power consumption and
performance scaling issues in current and future VLSI technologies.
Framework on-chip (SoCs) have advanced extensively in term of
exhibitions, dependability and incorporation limit [1]. The last
favorable position has prompted the development of the quantity of
centers or intellectual property (IPs) in the same chip. Lamentably, this
essential number of IPs has brought about another issue which is the
intra-correspondence between the components of a same chip. To
determine this issue another routine network-on-chip (NoCs) has been
presented with redesigned techniques and methodologies.

Since an electronic on-chip design had higher power consumption
and lower bandwidth management with high latency. To wipe out this
issue Photonic Network-on-chip configuration is favored for lessening
power utilization and the dormancy with the expanding transmission
capacity uses. Since the photonic system on-chip engineering Clos
parcel exchanged system is conveyed to exchange extensive data and
the circuit exchanged system is just ready to exchange short control
message data separately [2].

Other characteristics of these two design methods are the electronic
design carries high hardware complexity with area constraints. But in
case of photonic design is provided by a small reflection about the
devices to capture the signal with low latency [3]. So, a necessary
waveguide is used to switch the message signal from photonic to
electronic devices as optical to electrical signal transmission
respectively and vice versa.

We propose photonic NoCs architecture to address the power
consumption and resource overhead for the channel over provisioning,
while reducing latency and maintaining high bandwidth in CMPs. This
approach is captures in two different ways are a hybrid optical/
electrical architecture or crossbar architecture.

The PNoC architecture had three main contributions are as follows.
First, instead of conventional, globally distributed optical channels,
needs high laser power source with channel sharing arrangement
partitioned into number of subnets. Furthermore rather than
incorporated design the conveyed discretion plan, dynamic channel
booking system is liked to keep up high transfer speed without
corrupting throughput, it accomplishes low idleness. Thirdly, same
waveguides for same wavelength for exchanging message signal from
optical to electrical system configuration is material for permitting best
use of force and transmission capacity uses and bringing down force
utilization.

Background
PNoCs have prominent as a promising replacement of electronic

NoCs for the high bandwidth, low latency, and low power
consumption of nanophotonic devices. Figure 1 shows small CMPs
with four compute tiles interconnected by a PNoC. Each tile consists of
a processor core, private caches, a fraction of the shared last-level
cache, and router connecting it to the photonic network [4].

Figure 1 likewise demonstrates the subtle elements of an illustration
PNoC, composed as a straightforward, completely associated crossbar
interconnecting the four processors. The photonic channel associating
the hubs is appeared as being made out of miniaturized scale ring
resonators (MRR) incorporated photograph identifiers (PD) (little
circles) and silicon waveguides (dark lines interfacing the circles).
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Handsets (little triangles) check the limit between the electrical and
photonic space.

Figure 1: Four nodes fully interconnected photonic crossbar.

While the network shown is non-optimal in terms of scalability, it is
sufficient for introducing the components of a simple PNoC.

Overview of Crossbar Functionalities
We describe the various Clos architecture functions;

1. Arbitration scheme
2. Dynamic channel scheduling
3. Switching configurations
4. Deadlock avoidance

Arbitration scheme
Arbitration is a process in which both parties to a dispute ask an

independent third party to make a ruling on the matter. The decision
of the arbitrator is based on the submissions both parties make and is
final and binding.

At a given time a multi wavelength channel consists of many nodes
may be in the arbitration schemes to leverage collision detection on
data transmission of modulated or detected signal [5]. If one or more
senders nodes are modulated any copies of the arbitration flags; one
copy of each node keep in subnets fellow ownership for gain control in
channel; once a particular sender establishes the communication, it
modulates the wavelength in parallel with the data to be transmitted.
The mechanism by which the photonic channel is granted by one
sender, avoiding data corruption when multiple sender wish to
transmit, including dynamic channel scheduling this means sender has
conflict resolutions and data transmission credit of mechanism
conveyed from sender to receiver.

a) Receiver: Once any collector distinguishes an assertion banner, it
will take one of three activities: if the intervention banner is
uncorrupted (i.e., the sender banner has a 0 in one and only area
showing single-sender) and the inevitable message is bound for this
beneficiary, it will empower all its Rx rings for the demonstrated term
of the message, catching it. In the event that the discretion banners are
uncorrupted, however the collector is not the expected destination, it
will detune the greater part of its Rx rings for the demonstrated length
of time of the message to permit the beneficiary sole access. At long
last, if an impact is recognized, the beneficiary circuit will enter the
dynamic channel booking stage.

b) Sender: To send a packet, a node first waits for any on-going
messages to complete. Then, it modulates a copy of the arbitration flags
to the appropriate arbitration wavelengths for each of the N nodes. The
arbitration flags for an example four-node subnet are depicted in
Figure 2. The intervention banners are a tarb cycle long header (2 in
this case) made up of the destination hub address (D0-D1), a bimodal
parcel size marker (Ln) for the two upheld payload lengths (64-bit and
576-piece), and a "1-hot" source address (S0-S3) which serves as a
watchman band or impact location instrument: following the subnet is
worked synchronously, at whatever time different hubs send covering
discretion signals, the "1-hot" precondition is disregarded and all hubs
know about the crash. We leverage self-reception of the arbitration
flag: right after sending, the node monitors the incoming arbitration
flags. If they are uncorrupted, then the sender succeeded arbitrating
the channel and the two nodes proceed to the data transmission phase,
if the arbitration flags are corrupted.

Dynamic channel scheduling
The static data-to-channel allocation strategy of subnets-enabled

DBS-IC works well when network bandwidth adheres to advertised
performance. However, in real network deployments the offered
bandwidth will vary with changes in channel load, signal strength, and
intermittent connectivity [6]. Subsequently, the performance of any
static allocation strategy will degrade when available bandwidth
diverges from the amount of bandwidth assumed when the static
calculation was performed. To assure efficient operation of subnets-
enabled DBS-IC, the data-to-channel allocation strategy needs to
dynamically adjust in response to changes in network conditions.

Figure 2: Arbitration on a four node subnets.

To choose a data-to-channel allocation mapping, we use the
measured channel available bandwidth and calculate the expected
combined throughput of each candidate mapping with respect to cost.

The data-to-channel allocation mapping is chosen as follows. Based
on the distribution of throughput combined with cost, the dynamic
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mechanism chooses the best data-to-channel allocation mapping as
the one with the highest throughput. The dynamic mechanism
recourses by finding the next best point located to the left of the
previous value.

Upon sensing a conflicting source address, all nodes identify the
conflicting senders and a dynamic, fair schedule for channel
acquisition is determined using the sender node index and a global
cycle count (synchronized at startup): senders transmit in (n + cycle)
mod N order [7]. Before sending data in turn, each sender transmits an
abbreviated version of the arbitration flags: The destination address
and the packet size. All nodes tune in to receive this, immediately
followed by the data transmission phase with a single sender and
receiver for the duration of the packet. Immediately after the first
sender sends its last data flit, next sender repeats this process, keeping
the channel occupied until the last sender completes. After the
dynamic schedule completes, the channel goes idle and any node may
attempt a new arbitration to acquire the channel as previously
described.

Switching configurations
The fundamental building block of the photonic network is a

broadband photonic switching element (PSE), based on a ring-
resonator structure. The switch is, in essence, a waveguide intersection,
positioned between two ring resonators (Figure 3). The rings have a
specific reverberation recurrence, got from material and basic
properties. In the OFF state, when the full recurrence of the rings is not
quite the same as the wavelength (or wavelengths) on which the optical
information stream is tweaked, the light goes through the waveguide
convergence continuous, as though it is a detached waveguide hybrid
(Figure 3). When the switch is turned ON, by the injection of electrical
current into p-n contacts surrounding the rings, the resonance of the
rings shifts such that the transmitted light, now in resonance, is
coupled into the rings making a right angle turn (Figure 3), thus
creating a switching action [8].

Figure 3: Photonic switching element: (a) OFF state: a passive
waveguide crossover. (b) ON state: light is coupled into rings and
forced to turn.

Photonic switching elements and modulators based on the fore
mentioned effect have been realized in silicon and a switching time of
30 ps has been experimentally demonstrated. Their merit lies mainly in
their extremely small footprint, approximately 12 μm ring diameter
and their low power consumption: less than 0.5 mW, when ON. When
the switches are OFF, they act as passive devices and consume nearly
no power.

The PSEs are interconnected by silicon waveguides, carrying the
photonic signals, and are organized in groups of four. Each quadruplet,

controlled by an electronic circuit termed an electronic router, forms a
4 × 4 switch (Figure 4). The 4 × 4 switches are, therefore,
interconnected by the inter-PSE waveguides and by metal lines
connecting the electronic routers. Control packets (e.g. path-setup) are
received in the electronic router, processed and sent to their next hop,
while the PSEs are switched ON and OFF accordingly. Once a packet
completes its journey through a sequence of electronic routers, a chain
of PSEs is ready to route the optical message. Owing to the small foot-
print of the PSEs and the simplicity of the electronic router, which only
handles small control packets, the 4 × 4 switch can have a very small
area. Based on the size of the micro ring resonator devices, and the
minimal logic required to implement the electronic router, we estimate
this area at 70 μm × 70 μm.

Figure 4: Four photonic switching elements (PSE) controlled by an
electronic router (ER).

Deadlock avoidance
A deadlock is a situation in which two or more competing actions

are each waiting for the other to finish, and thus neither ever does.

Deadlock is a common problem in multiprocessing systems, parallel
computing and distributed systems, where software and hardware
locks are used to handle shared resources and implement process
synchronization.

In a transactional database, a deadlock happens when two processes
each within its own transaction updates two rows of information but in
the opposite order. For instance, process and overhauls column 1 then
line 2 in the definite time period that procedure B upgrades line 2 then
line 1. Process A can't complete the process of overhauling line 2 until
procedure B is done, yet handle B can't get done with redesigning line
1 until procedure An is done. Regardless of the amount of time is
permitted to pass, this circumstance will never resolve itself and due to
this database administration frameworks will commonly kill the
exchange of the procedure that has done minimal measure of work. In
an operating system, a deadlock is a situation which occurs when a
process or thread enters a waiting state because a resource requested is
being held by another waiting process, which in turn is waiting for
another resource. If a process is unable to change its state indefinitely
because the resources requested by it are being used by another waiting
process, then the system is said to be in a deadlock.

Deadlock freedom in the router network, henceforth just network,
relies on the consumption assumption: the network accepts and
delivers all messages sent by the network interfaces (NIs) as long as
they promise to consume all messages from the network when they are
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delivered. Routing algorithms that rely on this assumption, which to
the best of our knowledge is true for all non-loss routing algorithms
currently used in NoCs, are still susceptible to deadlock arising from
protocol interactions in the NIs. The IP blocks create message
dependencies between buffers in the Nis that, when transferred to the
router network, can lead to message dependent deadlocks.

• Gateway switch: Injected messages are required to make a turn
towards the injection switches. Ejected messages arrive from the
ejection message and pass straight through. Therefore, blocking
cannot happen

• Injection switch: Messages already traveling on the torus network
do not turn to the injection paths, so no blocking interactions exist
between them and the injected messages

• Ejection switch: Messages may arrive only from the torus network
and they either turn for ejection or continue straight through.
Since no messages arrive from the gateway switch, none of the
blocking interactions may happen (Figure 5).

Figure 5: Gateway (a) injection (b) ejection (c) switches. All possible
message-paths are marked to demonstrate that no blocking
interactions occur.

Proposed system block
The block diagram which explains the basic operation and

characteristics of photonic design as shown in the Figure 6. The
photonic defines a point-to-point interface between two or more
communicating devices such as IP cores and other bus interface
modules with the help of optical devices. While transferring data/
message signal the sender core act as a master and the receiver core act
as slave in order to establish and terminate the communication. A
separate control unit is to control access and flows of message/data
signaling transfer between the tiles are respect to the scheduling slots.

Since the data signals are arrived from the waveguides with the help
of ring resonator to follow the resonance conditions between the
circumferences and the number of waveguides traversing in it. Each
tile contains λ modulating “TX rings” and λ receiving “RX rings”,
where λ is the number of wavelengths multiplexed in the waveguide.

Based on the system architecture Figure 1, the PNoC have several
subnets with shorter waveguides of different sizes of 16-nodes CMP
system. Here all tiles are interconnected by two diverse subnets, one
level and one vertical. In the event that a sender and collector don't live
in the same subnet transmission requires a bounce through a middle of
the road hub's electrical switch. For this situation, transmission
encounters longer defer because of the additional O/E-E/O changes
and switch idleness. To remove the overheads of photonic waveguide
crossings required by the orthogonal set of horizontal and vertical
subnets, the waveguides can be deposited into two layers with
orthogonal routing.

Another observation from prior PNoC designs is that channel
sharing and arbitration have a large impact on design power efficiency.
Efficient utilization of the photonic resources, such as wavelengths and
ring resonators, is required to yield the best overall power efficiency. To
this end, we leverage the same wavelengths in the waveguide for
channel arbitration and parallel data transmission, avoiding the power
and hardware overhead due to the separated arbitration channels or
networks.

Figure 6: Four row interconnection of PNoC of CMPs with 16 tiles.

Unlike the over-provisioned channels in conventional crossbar
architectures, channel utilization in PNOC is improved by multiple
tiles sharing a photonic channel.

Results
The design is coded and simulated using different layered

configurations. The result analysis of power and latency could be
depicted with respect to the system performances (Figures 7 and 8).

Figure 7: Synthetic workloads.
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Figure 8: Power analysis.

Conclusion
Cores with PNoCs interfaces and crossbar interconnection enable

true modular replacement of electronic design with high bandwidth
and low latency of communications. This permitting the framework
integrators picks the tiles ideally lessen the force and to work parallel
engineering plans. Without lessening the execution of the processors
the tile could be reused with no extra time of tile to be reproduced.

Depending up on the continuous applications these interconnection IP
centers can be utilized as a part of various on-chip plans proficiently.
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