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Abstract

Senescence is characterized by the decline in the ability to cope with stress. Hormesis regulation of opposing
biological effects of low and high dosages, can determine longevity, and disease vulnerability at appropriate doses.
Regulation of age-related changes in micro RNA opens new areas of therapeutic targets. Micro RNA downregulates
stress response pathways with age establishing vulnerability to multiple age related disease which, if targeted could
theoretically delay senescence. Mitochondrial targeted drugs have intervened in seemingly otherwise unrelated
pathologies like neurological diseases, Alzheimer’s disease, infections, diabetes, acute ischemic shock, and wound
healing; an example of a common magic bullet for intervention in mitochondrial dysfunction pathologies of oxidative
stress. The telomerase subunit, TERT, the promiscuous reverse transcriptase, exhibits hormetic activity, benefit at
low levels, dysfunctional at high levels, and is required for signally survival. The appropriate targeted telomerase
therapy is key for optimal desired drug therapy for inhibition in cancer and HIV infected therapy and enhanced in
bystander cells for oxidative stress tolerance. Comparative biology studies reveal the role of Neuregulin and Nrf2, as
key players in the puzzle of the long lived disease free mole rat despite high levels of oxidative stress. A hibernation
stress response cold shock peptide restores synaptic plasticity, and is beneficial in neurodegeneration. Muscles and
gut are not only responsible for their respective roles in locomotion and digestion but also regulate systemic
responses in the body. New insights into the roles of muscles and gut change how drugs affect multiple organs and
impact the route of administration. While oxidative stress can either signal metabolic benefits, death or be
neutralized by a wheelhouse of antioxidant pathways, recent technological advances and conceptual shifts, allow
regulation of opposing consequences by appropriate targeting of drugs to achieve protective effects in multiple age
related diseases.

Introduction
Stress tolerance capacity is a hallmark of longevity protection.

Latent pathway activation of protective cascades, triggered by
environmental challenges to tolerate temperature, oxygen deprivation,
reactive oxygen species, and radiation can be beneficial in humans.
Hormesis reflects dose dependent opposing effects of toxic agents,
harmful at threshold high levels but beneficial at low doses [1]. The
hormetic dose-response, represents a paradigm shift in long-standing
beliefs about the nature of the non-linear dose-response in the low
dose zone, as well as embraces the paradoxical roles of ROS signaling
benefit versus toxic role in disease. The design of pre-clinical studies
and clinical trials as well as strategies for optimal patient dosing in the
treatment of numerous diseases, depends on eliciting a dose that
neither is not sufficient to activate the signaling protective pathways
nor is toxic [2].

Low doses of UV in Paramecia rejuvenated the cells and extended
their lifespan, and the overarching assumption was that, an otherwise
harmful agent can induce conserved beneficial pathways to extend
longevity as well as tolerance to the damaging agent [3]. Likewise,
environmental agents of both the cold and heat stress can increase
resistance to the infection and extend life span [4,5]. Hormetic
intervention has potential for benefit in aging, diseases, and health
promotion [2,6,7]. Dose and frequency of exercise, as a hormetic agent
can influence both heat shock proteins and strength development in
aged subjects [8,9] and functions as stress response inducing agent
[10]. To avoid tipping the balance from benefit to harm from improper
doses of a toxic agent, mimetics of the environmental cues for therapy

are an option [10]. Stress tolerance by mimetics of hibernation offer an
alternative strategy for cardiac stress intervention [11,12]. Mimetics of
hibernation and exercise induce tolerance to oxidative ischemic stress
in rodent models also to ischemic stress of stroke [13] and
hemorrhagic shock [14-16]. While ROS is a toxic by-product of
aerobic metabolism, capable of structural damage to vital essential
macromolecules, ROS is as well, a physiologically required
transduction signal for gene regulation and redox regulation. The
recent review on redox biology in human health from life to death [17]
provides essential insights into the paradoxical roles of redox signaling
for life, death, and cancer therapeutics. Lessons learned from model
systems of aging, i.e., paramecia, nematodes, rodents, bears,
woodchucks, as well as other vertebrates that survive in extremes
environments, offer clues to tolerance applicable for disease
intervention [18]. The mole rat has critical pieces in the puzzle for
prevention of existing oxidative damage from expressing the normally
toxic consequences of a high oxidative milieu [19]. Recent reviews
cover oxidative stress, and telomerase in mitochondria and role in
longevity and health [20-23].

The review topics explored here represent paradigm shifts that
impact anti-aging and related pathologies therapeutics. The topics
include; 1) micro RNA as a new technology that regulates gene
expression; 2) aptamers and engineered molecules that have the ability
to target drugs to specific organs, cells membranes, and diseased
cancer cells, Alzheimer’s, and HIV cells with appropriate therapy; 3)
Telomerase compartmental nuclear, nucleolar, and mitochondrial roles
that can modulate dose dependent hormetic oxidative stress in disease
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versus normal cells; 4) neuregulin and Nrf 2, associated with stress
tolerance in mole rat long life longevity, has potential in antiaging
therapy; 5) hibernation, as a model system of stress tolerance and
disease intervention mimetics for human diseases; 6) muscles as a
communication system secretome organ; 7) the gut and brain as a
systemic hormone connection which impacts delivery of therapeutic
interventions.

Together these innovations reveal that pathologies with common
denominators, oxidative, insulin, chronic or acute trauma can be
treated by the same drug if targeted at a dose appropriate inhibition or
up regulation to intervene in disease progression and protect normal
cells. Mode of administration requires proper adherence to muscles
and gut role in systematic effects. In aged subjects, treatment benefit
may require a longer interval for benefit. Although we always knew
that exercise and diet were important, the innovation in new
technologies, accentuate their importance with sound scientific
foundations for their role in aging and disease vulnerability.

MicroRNAs are small non-coding RNAs that can dictate expression
of survival and longevity pathways found in plants, animals, and
viruses involved in RNA silencing and post transcriptional regulation
of gene expression. The microRNAs are generated from double
stranded RNA, processed, and loaded onto a complex RNA-induced
silencing complex (RISC) which is directed to a mRNA with the
complementary homology target sequence with the ability to silence
the expression of that gene transcript [24,25]. Identification of multiple
microRNAs is identified and is emerging as drug targets for
intervention in senescence and multiple diseases [26-39]. Senescence
and age-related diseases are characterized by vulnerability to oxidative
stress and immunosuppression. MicroRNAs that principally target
genes associated with the immune inflammatory response and cell-
cycle arrest were identified in the kidney [33]. Renal specific
microRNAs were found that promote renal senescence by suppression
of mitochondrial antioxidants, superoxide dismutase 2 and thioredoxin
reductase and thereby promote kidney senescence. By using interfering
siRNA, complimentary to these suppressive microR-335 and
microR-34, senescence of old mesangial cells was inhibited via
upregulation of antioxidants SOD2 and Txnrd2 with a concomitant
decrease in ROS [33]. The possibility that aging could be halted by
antisense homology siRNA and prevent downregulation of stress
resistance pathways by suppression of specific microRNAs provides the
“magic bullet” possibility to delay multiple age-related oxidative stress
related disease progression.

MicroRNAs show intervention potential in neuroprotective
intervention in Huntington’s disease [34] and in Alzheimer’s disease
[35,36]. Non-coding RNAs are recognized as regulators of skeletal
muscles in development and diseases [37]. The interaction of
senescence pathways in mitochondrial biogenesis, telomere attrition,
and epigenetic interactions by microRNAs have been recently reviewed
as master switches, and provide the promise of target directed
intervention in aging and cancer [38,39].

A recent study explored the role of a transcribed long-non-coding
RNA in aging endothelial cells, and identified ASncmtRNA-2.
Endothelial cells from aortas of aged mice revealed increased levels of
ASncmtRNA-2. The cell cycle inhibitor p16 gene also showed
expression of the same ASncentRNA-2 sequence. Identified
microRNAs, has-miR4485 and has-miR-1973, had perfect homology to
the double stranded region of ASnxmtRNA-2. Endothelial cells
overexpressing ASncmtRNA-2 showed accumulation of cells in G/2/M
phase, suggesting a direct role of microRNAs in replicative senescence

[40]. In hibernation, microRNA shows adaptive changes and may be
pivotal if specific microRNAs are identified to affect adaptive stress to
promote stress tolerance [41].

Aptamers are small molecules isolated from nucleic acid libraries
with desired selective binding properties [42] to provide an “address”
for drug delivery. The aptamer targeted oligonucleotide therapeutics to
allow site specific delivery for interference or promotion of metabolic
network to alter disease pathology [42-44]. SiRNA chimeras are
available for HIV [45,46] and Alzheimer’s disease [47]. In Alzheimer’s
disease pathology, amyloid targeted peptides can inhibit toxicity [48]
and amyloid aggregation [49]. Curcumin loaded-PLGA nanoparticles
conjugated with Tet-1 peptide are available to bypass the blood brain
barrier to deliver the strong antioxidant properties of curcumin [50].
Fluorescently tagged anti-RNA aptamer β 55 which binds to amyloid
plaques allows optical imaging agents for amyloid plaque detection
both in vivo human Alzheimer’s brain tissue, and in vivo transgenic
mice [51] aids in early detection of Alzheimers disease, at a time when
available therapeutics may halt the progression of the disease.
Mitochondrial targeted aptamers are identified to deliver drugs
directly to mitochondria and intervene in mitochondrial dysfunction
related diseases [52]. Targeted catalase to mitochondria, not to the
nucleus or peroxisome, in transgenic mice established the importance
mitochondria in delay of age related diseases and increased longevity
[53].

Antioxidant agents engineered or discovered by accident represent a
class of mitochondria targeted therapeutic drugs. Mitochondrial
targeted agents can be conjugated to known redox agents to
triphenylphosphonium ion (TPP+) with coenzyme Q (MitoQ) and
plastoquinone (SkQ1) [23,54,55] to neutralize mitochondrial oxidative
stress in pathology and prevent senescence. A review of the Szeto-
Schiller (SS) compounds, which were serendipitously found to
preferentially concentrate in the inner mitochondrial membrane, have
intervention potential in multiple diseases [23].

The discovery that mitochondrion is a direct site of A beta
accumulation in Alzheimer's disease [56] highlighted mitochondria as
the source of free radical generation and oxidative damage in disease
progression. Mitochondrial targeted catalase was found effective in
reducing oxidative damage in a mouse model of Alzheimer’s disease
and likely in other neurological disorders [57]. The antioxidant
mitochondrial SS31 prevents mitochondrial abnormalities, and
synaptic degeneration in Alzheimer’s disease [58]. The mitochondrial
targeted drug was neuroprotective in Parkinson’s disease mode [59].
RNA silencing of genes affected by Alzheimer’s disease, enhance
mitochondrial function and synaptic activity in Alzheimer’s disease
model [60]. Cell-permeable antioxidants targeted to mitochondria
promote protection of mitochondria, oxidative toxicity in reperfusion,
injury as well [61,62]. Mitochondria-targeted antioxidant SkQ1
improves insulin resistance [63] and impaired dermal wound healing
in old mice [64]. Targeted antioxidant, therapy then, shows promising
intervention reduction in Alzheimer’s disease toxicity, in Parkinson’s
disease, reperfusion injury, diabetes and wound healing,
demonstrating the far reaching benefit of targeted antioxidant therapy
in intervention in different pathological scenarios [23]. Side effects
emerged with undesirable effects in cell bioenergetics [65-67], as might
be anticipated from predicted interference in ROS signally benefits.
The intervention in multiple diseases by targeted antioxidants
demonstrate that mitochondrial dysfunction and oxidative stress
within mitochondria is a common denominator in disease progression
and can be treated by common drugs for intervention in diseases.
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Examples of supplements known to protect cell structure or to
activate protective metabolic networks include lipoic acid, carnitine,
and resveratrol. Lipoic acid has antioxidant activity that preserves the
structural and functional integrity of RBC in diabetes. The RBC can
then assume a more efficient role as the first line of systemic defense
against diabetic complications arising from oxidative stress-induced
damage [68, 69]. Acetyl-L-carnitine induces upregulation of heat shock
proteins and protects cortical neurons against amyloid-beta peptide
mediated toxicity and thus is nutritional candidate for intervention in
Alzheimer’s disease [70]. Resveratrol may target activation of the
SIRT-1PGC-1 neuroprotective axis. Modulator of cellular stress
response in health and disease states of carnitine and acetyl-L-
carnitine in mitochondrial dysfunction, aging, and age-related
disorders [2,70]. A mushroom extract was found protective of
pancreatic islets and may have potential in diabetes [71]. A complete
list of potential antioxidants or beneficial supplements is well beyond
the scope of this review.

Telomerase is almost universally conserved in eukaryotes [72]
signifying its essential role in survival strategies. Telomerase is
promiscuous in multiple cellular regulatory roles controlling survival
pathways by translational and transcription interactions, and
chromatin modification that each impact cell survival, albeit by
separable mechanisms described below, including responses to
oxidative stress. Telomerase is a reverse transcriptase TERT, a subunit
catalytic protein with an RNA ligand TERC functions as an RNA
dependent DNA polymerase, capable of replacing tandem short DNA
sequences at telomere ends of eukaryote chromosomes [73]. In its
telomere maintenance capacity, telomerase is recognized as a major
deterrent to replicative senescence and decline of function with age.
Telomere dysfunction induces metabolic and mitochondrial
compromise, activates p53-mediated cellular growth arrest, senescence
and apoptosis to drive progressive atrophy and functional decline in
high-turnover tissues [74]. The reversal of tissue degeneration in aged
telomerase deficient mice by genetically engineered inducible
telomerase activation shows unprecedented evidence for the major
participation of telomerase in regeneration and rejuvenation of organ
systems [75]. Telomerase deficiency impairs glucose metabolism and
insulin secretion [76]. TERT, the telomere reverse transcriptase
catalytic subunit promiscuous protein can partner with a different
mitochondrial RNA ligand, RMRP to transform its function into the
only known RNA dependent RNA polymerase, the only enzyme
identified in eukaryotes. The double stranded RNA can be processed
into small interfering RNA siRNA in a Dicer-dependent manner,
thereby establishing a mammalian RNA dependent RNA polymerase
[77]. Since small interfering RNA are capable of regulating gene
expression, mitochondrial based regulation of gene expression is a
reality [77]. TERT is positioned at the crossroads of aging, disease,
senescence and health in recent reviews [20-23] that document the role
of TERT in mitochondria and oxidative stress. Since mitochondria are
critical determinants in survival, mitochondrial TERT emerges as a
prominent denominator in response to disease and target for therapy.
In response to oxidative stress, TERT protects mitochondria [78-82]
and unfortunately protects cancer cells [80] by inhibiting apoptosis via
association with BCL-1 pathway [83]. TERT protects developing
neurons from cell death after DNA damage [84]. The finding that
TERT exacerbates mitochondrial toxicity [85] is not yet resolved with
the other studies showing the protective role TERT. TERT regulates
gene expression at different levels. At the levels of translational control
of the cell cycle, TERT inhibits p15INK4B [86], by chromatin
modifications. TERT regulates Wnt signaling [87], and induces a DNA

damage repair response [88]. TERT also participates in the
transcriptional control of the Myc-Wnt developmental program [89].
TERT Wnt/catenin signaling in stem cells [90] exerts master regulation
in multiple different stress response pathways. TERT operates in
reciprocal transcriptional control of NF kappa B [91]. Importantly, Nf
kappa B can also regulate TERT as well in reciprocal interactions [92].
The interactions of TERT in multiple pathways can be isolated
genetically [93]. TERT regulation may be targeted to achieve separate
desired therapeutic goals.

In diseases, telomerase overproduction represents the dark side in
cancer progression and HIV infection and is a successful target in
disease intervention. An immune approach to develop a cancer vaccine
is based on activation of the immune response system with tumor-
reactive peptides that were derived from telomerase tumors, to destroy
cancer cells [94,95], and is an approach that may be effective in HIV
therapeutics as well.

Disease damage shows the consequences of TERT deficit. The
hippocampus of Alzheimer’s disease brains, and in cultured neurons,
shows oxidative stress damage. The absence of TERT increases ROS
generation and oxidative damage in neurons induced by pathological
amyloid β peptide induced apoptosis [96,97], ischemic brain injury,
neurotoxicity [98]. TERT presence was associated with promotion of
neuronal survival in the developing rat brain after hypoxia-ischemia,
including enhancement of neurotrophin-3 expression in astrocytes
[99]. Using a TERT enhancing agent can promote delay of the onset of
amyotrophic lateral sclerosis, and suggests therapeutic increase of
TERT in TERT deficient pathologies [100]. Nitric acid can activate
telomerase and delay endothelial senescence [101] and has therapeutic
potential.

A paradigm shift in the dose dependent hormetic effects of TERT at
low dose, and dysfunction at high dose impacts therapeutic strategies
in disease intervention. Telomerase involvement in oxidative stress in
diabetes, Alzheimer’s disease, wound healing, chronic cardiac
dysfunction, acute stresses of heart attack, stroke, and hemorrhage
requires telomerase enhancement in normal bystander cells, while
telomerase inhibition is required in cancer and infected cells. Targeted
therapy allows selective disease therapy.

The naked mole rats (Heterocephalus glaber) emerge as major
player in providing puzzle pieces in longevity determination, and the
role of neuregulin in longevity. The extremely long-lived species
inhabit an underground hypoxic environment, and despite high levels
of oxidative damage, and hypoxia inducible factor HIF-1, live a long
life without neurological pathology and cancer despite short telomeres
[102, 103]. All the secrets to oxidative tolerance are elusive but recent
studies reveal important clues to its tolerance to high oxidative stress.
Protein stability and resistance to oxidative stress were found to be
determinants of longevity in the longest-living rodent, the naked mole-
rat [104]. Neuregulin-1 emerges as a critical determinant of longevity
[105]. Neuregulin positively correlates with lifespan in divergent
species, and is critical for normal brain function during both
development and adulthood in the naked mole rat [105].

Neuregulin is known to modulate muscle metabolism and insulin
sensitivity [106,107], and neurotoxicity [108]. Neuregulins are
multitasking master regulator that function as a myokines, participate
in myogenesis, muscle metabolism, and may function for the rapid and
chronic metabolic effects related to muscle contraction, including
improvement in insulin sensitivity and maintained in the mole rat and
old animals [108]. In a manner analogous to insulin and exercise,
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neuregulins stimulate glucose transport through recruitment of
glucose transporters to surface membranes in skeletal muscle. Like
muscle contraction, neuregulins have additive effects with insulin on
glucose uptake [108]. Neuregulin-1 also exerts protective effects
against neurotoxicity and development and plasticity [107]. The rapid
and chronic metabolic effects of neuregulin appear to be related to
muscle contraction. The effects of neuregulin resemble those of
exercise, by improvement in insulin sensitivity, preservation of
energetic metabolism, and insulin responsiveness [106-108].
Neuregulin is target for up regulation in age-related therapy and down
regulation in cancer.

Figure 1: TERT stimulates mitochondria for health. Dysfunctional
TERT protects diseased cells. Oxidative stress increases with age,
while antioxidants decrease leading to disease in old age.

A key member of the neuregulin pathway is the nuclear factor
erythroid factor 2 (Nrf2) that regulates the transcription of several
hundred cytoprotective molecules, including antioxidants, detoxicants,
and molecular chaperones, heat shock proteins. The NrF2 itself is
tightly regulated by mechanisms that either promote its activity or
increase its degradation. Nfr-2 is regulated in the mole rat and
maintained though out its long life time [109]. Constitutive Nrf2-
signaling activity is significantly linked with increased maximal
lifespan, not linked to the protein levels of Nrf2 itself, but rather with
down regulation of proteins that target Nrf2 for degradation [109].
These mole rat studies highlight Nrf2 as an anti-aging molecule, and
the strategy to target degradation pathways of key antiaging regulators
in other systems.

Nematode mutants share with mole rats, the ability to have
extended life span with an “excess” of oxidative damage, associated

with a gene mutation deletion of mitochondria Superoxide
dismutase-2 [110]. Mitochondrial and cytoplasmic ROS have opposing
effects on lifespan [110,111], a discovery that emphasizes the role of
positional effects of regulators of ROS on longevity, and a “plan B” for
other cytoplasmic regulators of damage.

Hibernation is a classical beneficial response to environmental
stresses of depleted energy stores, intracellular acidosis, hypoxia,
hypothermia, cell volume shifts, and inactivity induced muscles
wasting [112], that mimic markers of the senescent phenotype.
Changes in hibernation include upregulation of key regulators of
energy metabolism and mitochondrial biogenesis [41,113,114]
including PPAR gamma transcription factor and its coactivator, PGC.
Delta-2 opioid receptor agonist, a mimetic of the Hibernation
Induction Trigger, activates protection in models of ischemic stress in
rodent model systems of heart attack [11,12], stroke [13], and
hemorrhagic shock [14-16] and could be effective in Alzheimer’s
disease pathology [115]. The delta-2-opioid agonist shows inhibition of
p38 MAPK [116], and may be protective in brain associated injury. The
p38 delta opioid receptor agonists show HIV intervention potential in
HIV pathologies [117,118].

Another hibernation stress tolerance to cooling damage and
reheating has potential anti-aging clinical applications [119]. Cooling
and hibernation induce a number of cold-shock proteins in the brain,
including the RNA binding protein, RBM3. While cooling induces the
loss of synaptic contacts, the synaptic contacts reform with rewarming
in artificially cooled normal rodents, while mouse models of
neurodegenerative disease were impaired in the rewarming response
unless supplemented with RBM3 lentiviral delivery. RBM3 protected
synaptic loss, behavioral deficits, and prolonged survival, while knock
out of RBM3 exacerbated synapse response. These experiments
provide evidence of the potential benefit of RMB3 in neurological
disease and other protein structure dysfunctions, resulting from
oxidative damages in diabetes and viral infections [119].

AMPK is a known as the master regulator of energy [120,121]. The
AMP-activated protein kinase (AMPK) is a sensor of energy status
that, when activated by metabolic stress, maintains cellular energy
homeostasis by switching on catabolic pathways and switching off
ATP-consuming processes. AMPK is also crucial in regulation of
whole body energy balance, particularly by mediating effects of
hormones acting on the hypothalamus [121]. AICAR, a mimetic of
exercise, triggers the signal that the cell pathway needs to be
replenished [121] The AMPK-PPAR pathway activation by oral
administration of AICAR can enhance training adaptation or even can
increase endurance without exercise [121], and improve tolerance to
hemorrhagic shock [16]. Age-associated reductions in AMPK activated
kinase and mitochondrial biogenesis, responded to AICAR treatment
[122-124]. AICAR administration benefited motor and cognition
function in young as well as in aged mice via a muscle mediated
pathway [123,124]. Earlier attempts to alleviate energy loss, by AICAR
in elderly [122] may be due to route of drug delivery.

A longer duration of AICAR treatment in old animals, 14 days in
old versus just 3 days in young animals, induced the positive exercise
response with improved water maze, rotarod, and open field
parameters that correlated with increased neuronal and plasticity gene
expression in both the hippocampus and muscle [123,124].
Pronounced upregulation of mitochondrial genes in muscle and brain,
relative to neuronal development and plasticity, were enriched in the
hippocampus. Age, duration of treatment, and route of administration
appear to play an important role in the effects of AICAR on behavior,
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since alternative routes were not effective [124]. The results
demonstrate that the AMPK agonist AICAR can increase spatial
memory and improved motor function likely mediated by muscle
mediated pathways, since female transgenic mice with a muscle-
specific mutated AMPK α2-subunit, did not respond to AICAR [123].
However, recent studies with young mice found the beneficial muscle
and brain effects, but found an adverse effect of AICAR on the brain,
after 14 days, raising concern about AICAR long term use [125]. It is
well known that exercise stimulation of brain is important in health
maintenance [126-128] and exercise studies exemplify molecular
foundation for the critical role of exercise as therapy in aged humans.

The concept that the muscle is not only a locomotor unit, but rather
is a secretome organ that releases several hundred secreted peptides
that communicate throughout the body [129,130] Multiple muscle
functions represents a paradigm shift for understanding how muscle
connections can impact adipose tissue, liver, pancreas, bones and brain
[129,130]. Muscle induced myostatin, LIF, IL-6 and IL-7 affect muscle
hypertrophy and myogenesis, BDNF neurotrophic factor affects the
brain. IL-6 is involved in AMPK-mediated fat oxidation with systemic
on the liver, adipose tissue and the immune system, and mediates
crosstalk between intestinal L cells and pancreatic islets. Other
myokines include the osteogenic factors IGF-1 and FGF-2 FSTL-1
probably leads to an altered myokine response, and the association
between sedentary behavior and many chronic diseases [129,130]. The
strongest molecular relationship of exercise and functional
connectivity was identified for brain-derived neurotrophic factor,
BDNF, as well as the role of exercise and energy intake as a
determinant of vulnerability to injury a disease [128-130]. Exercise
appears to be a universal protective therapeutic agent with positive
whole body benefits.

Liraglutide, a long-acting glucagon-like peptide-1 hormone (GLP-1)
analogue resistant to degradation is marketed as an anti-diabetes drug.
Insulin resistance is a common dominator in diabetes and
neurodegenerative diseases [130]. The gut secreted hormone with
insulinotrophic activity, promotes glucose hemostasis and shows
treatment potential for multiple organ pathologies that share insulin
resistance, beside diabetes. Alzheimer’s and neurodegeneration
diseases exhibit positive and protective effects in several different
tissues, including pancreas, heart, and brain, by promotion of glucose
homeostasis when oral, but not intravenous glucose administration
stimulates GLP-1 secretion [130]. The gut glucagon like peptide, GLP-1
actions depend not only on the direct effect mediated by its receptor
activation, but also on the gut-brain axis involving an exchange of
signals between both tissues via the vagal nerve, thereby regulating
numerous physiological functions in energy homeostasis, glucose-
dependent insulin secretion, as well as appetite and weight control with
insulin tropic activity [130]. Previous studies of type 1 and 2 diabetes
[131] GL1 and GLP2 biology [132] supplement the role of the gut and
diabetes biology.

Importantly, several preclinical studies showed anti-apoptotic, anti-
inflammatory, anti-oxidant and neuroprotective effects of liraglutide
against type 2 diabetes, stroke and Alzheimer’s disease (AD), whereas
several clinical trials, demonstrated some surprising benefits of
liraglutide on weight loss, microglia inhibition, behavior and
cognition, and in AD biomarkers [129-131].

Discussion
The ability to withstand oxidative stress is regulated by: 1) reducing

the amount of ROS produced; 2) neutralizing the ROS that is produced
but not before low levels induce beneficial pathways; 3) appropriate
targeting ROS in mitochondria, versus cytoplasmic ROS; 4) avoiding
toxic effects of high levels of oxidative stress without fallout of diseases
and lifespan reduction. The environment, lifestyle, and attitude can
alter the amount of oxidative damage, pollution, job choices, and
perception of stress. Antioxidant networks have dose dependent
beneficial signaling, and “backup” plans, in different species, mutations
that reveal use of pathways residing in different intra cellular
cytoplasmic compartments.

Despite the central role of mitochondrial determination of lifespan
and diseases vulnerability, other cytoplasmic compartments and gene
expression regulator, miRNAs are now visible in the senescent
landscape. The ability to tolerate high levels of oxidative stress such the
phylogenetically diverse species, the mole rat and nematode, birds, and
bats, emphasize the potential of humans to adapt to extreme life style
demands. Recent studies reveal the long-lived rat has high oxidative
damage in youth that does not increase with age, has protective
pathways sustained with age, due to decreased degradation of the
protective Nrf2. The nematode as well has high oxidative damage in
youth and increased longevity. It seems that adaptation to high stress
in youth by “backup protective pathways”, that are maintained with
age, represent a desired healthy longevity- promotion strategy that may
be used to promote human resistance to age-related diseases.

Summary
Oxidative stress can signal required metabolic benefits, kill diseased

cells, be neutralized by a wheelhouse of antioxidant pathways, and be
tolerated. Now, technological advances allow the ability to capitalize on
the separation of opposing functions of oxidative stress, by the use of
targeting drugs to achieve the desired goals, i.e., inhibition of TERT
overexpression in cancer and HIV diseased cells, enhanced TERT in
protection of normal cells. MicoRNAs, known to down regulate age-
related stress tolerance, may be targeted and delay senescence onset, or
intervene in specific organ diseases. Master regulators, TERT,
Neuregulin, Nrf-2 and AMPK regulation pathways and miRNAs have
associations that control oxidative stress responses that are sensitive to
appropriate hormetic signals and mimetics of stress response triggers.
Multiple pathologies, with ischemic stress, or insulin resistance can be
treated by the same drug. The muscle and gut brain connections
throughout the body via myokines and hormones revolutionize
concepts of the importance of oral, intraperitoneal, or intravenous
delivery can determine outcome of treatment. Age, duration of
treatment, mode of delivery, and dose, are critical variables in drug
outcomes on health and age related disease management.
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