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Abstract
Nature has always been the fundamental source of inspiration for researchers to understand the complex biological 

functions. Photosynthesis is among the important natural phenomena and hence, gained interest towards developing 
the artificial photosynthetic reaction centers. Electron and energy transfer process between various porphyrin units 
within the multiporphyrin arrays is the important key in developing such systems. Long duration of charge separated 
state and spectral coverage scope of the accepting porphyrin units are another important factor that contribute to an 
efficient mimic of the photosynthetic reaction center. Meso-linked porphyrin architectures provide a great aspect in 
this regard because of short inter-porphyrinic distance with optimal dihedral angle. The present review highlights the 
design of various kinds of meso-linked multiporphyrins and study of electron and energy transfer processes between 
them that serve as an efficient model for light harvesting systems.

Keywords: Multiporphyrins; Meso-linked porphyrin; Cyclic arrays;
Electron and energy transfer; Electronic coupling; Light harvesting 
system

Introduction 
Nature is often the ultimate goal for chemists. Photosynthesis is 

one of the most important natural processes. Nature, over the billions 
of years, possesses the molecular structures to achieve this process of 
photosynthesis. During photosynthesis, plants convert light energy into 
electrochemical energy and eventually into chemical potential energy 
stored in carbohydrates and other compounds. The carbohydrates are 
oxidized to provide energy to the living organism. The importance 
of photosynthesis has driven many researchers to look for ways to 
duplicate the fundamental features of photosynthesis in simplified 
systems. In designing systems for light energy conversion, nature 
utilizes multicomponent arrays of organic molecules to channel the 
energy and electron transfer processes in the light harvesting antenna 
and photosynthetic reaction centers. The structure, orientations and 
interactions between the constituent units of the arrays of organic 
molecules determine the energy and electron transfer processes in 
biological systems.

Nature has designed a most sophisticated molecular system for the 
reaction center in order to achieve effective charge separation. Primary 
energy transfer and trapping in photosynthesis occurs in sophisticated 
machinery consisting of a so-called antenna and a reaction center 
(RC) together forming a photosynthetic unit (PSU). The antenna is an 
array of pigment molecules, which absorbs light energy and transfers 
it in a form of molecular electronic excitation to a trap, the RC, where 
primary charge separation takes place. In nature, many different types 
of RCs and even more antennas exist in the form of chlorophylls, 
Quinone’s, carotenoid polyenes, and many other organic molecules. 
The light harvesting in purple bacteria is among the most studied and 
best understood processes of primary photosynthesis that helps in the 

development of artificial light harvesting systems [1].

The arrangement of bacterial photosynthetic system unit (PSU) 
was first analyzed by X-ray crystallography in 1995 [2-4]. The PSU of 
purple bacteria generally consists of more than one antenna complex. 
The peripheral antenna (LH2) is in touch with the core antenna (LH1), 
which surrounds the RC. The peripheral antenna LH2 consists of two 
concentric rings of BChl molecules named B800 and B850 according 
to their characteristic Qy

 
absorption maxima at 800 nm and 850 nm. 

B800 contains nine bacteriochlorophylls arranged in a planar circle 
form. In contrast, B850 contains 18 bacteriochlorophylls in a barrel 
form arranged perpendicularly to B800. The light energy absorbed by 
B800 is transferred to B850 according to the cascading energy transfer. 
The excitation energy travels further to other B850s and finally reaches 
LH1. Here, 30 bacteriochlorophylls B880s are arranged in a barrel 
form similar to B850, except for having one open exit as it lacks one 
pair of bacteriochlorophyll and does not form a full ring. In addition, 
LH1 contains the reaction center in the central space. Therefore, the 
excitation energy reaching LH1 is transferred effectively to the special 
pair initiating the charge separation. The arrangements of B850, LH1, 
and interestingly even the special pair are given by coordination of the 
imidazolyl side chains in transmembrane helices to the central Mg2+ 
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[53,54], 3) windmill-shaped [55,56], and 4) dendritic architectures 
[57]. Their geometry-dependent photochemical properties are of 
great importance in artificial light harvesting systems.

The power of self-assembly synthesis lies in its ability to rapidly 
generate large and sophisticated molecular architectures from readily 
accessible building blocks with maximum efficiency. Extensive 
hands-on synthetic steps are minimized because the pathway to the 
formation of assemblies is guided by the nature of recognition surfaces 
programmed into the components. This provides access to high yields 
under thermodynamic control. A ligand displaying multiple, divergent 
Lewis basic sites provides a means to extend the self-assembly strategy 
to three-dimensional metal-templated porphyrin arrays. Metal-to-
ligand interactions or hydrogen bonding between long porphyrin arrays 
was described by Branda and group as an efficient means to achieve the 
immense electronic communication through long distances between 
porphyrin moieties of supramoleclar structures [51].

Electronic interactions between the porphyrins

The electronic interactions of neighboring porphyrin chromophores 
in the arrays are the most important parameters for efficient electron 
transfer processes. The absorption spectrum reflects such kind of 
interactions among the porphyrins. The electronic interactions between 
neighboring porphyrins are changed when incorporated into a different 
geometry with different conformational freedom. The simple point 
dipole exciton coupling theory has been developed by Kasha et al. [58] 
which was found very useful to interpret the spectral changes caused by 
the inter-chromophore interactions, where the strength of the dipole 
interaction is represented by coulombic interactions that depend on the 
oscillator strength, orientation, and distance. The allowed lower energy 
transition (J-type coupling) has been observed due to interaction of the 
transition dipole moments in a head-to-tail arrangement, while that 
parallel arrangement results in an allowed higher energy transition 
(H-type coupling). The spectral changes observed in the Soret bands 
are due to exciton coupling, since the magnitude of exciton coupling 
is proportional to the square of oscillator strength. The components 
of the Soret band, Bx and By, which are degenerate in a porphyrin 
monomer, independently interact with the transition dipole moments 
of neighboring porphyrins but in a porphyrin dimer they couple 
differently. Excitonically coupled states are generated in electrostatically 
interacting porphyrins in a close arrangement. Transitions are 
allowed to lower the energy of two Bx states and the two unperturbed 
transitions By and Bz. Thus, the Soret band of porphyrin dimer splits 
into a red-shifted Bx component and unperturbed By, Bz components 
as only Bx transitions are parallel, and other dipole interactions of By, 
Bz components have been cancelled out for an averaged perpendicular 
conformation of dimer product.

Meso-meso linked porphyrin arrays 

Covalent multiporphyrin arrays are attracting interest as 
multichromophoric model systems for the study of electron transfer 
process in natural photosynthetic systems, as well as in the development 
of novel functional materials [13]. Various types of covalently linked 
arrays of metallo porphyrins have been designed and synthesized with 
the goal of applying these molecular oligomers to molecular photonic 
devices [26,52,59-62] as artificial light-harvesting systems [34,62-65]. 
Among them, meso-meso linked porphyrinic arrays have been emerged 
as an interesting candidate for exploring the artificial photosynthetic 
reaction centers and light harvesting antenna complexes (Figure 1). 
First rational synthesis of directly linked meso-porphyrinic arrays has 
been done by Susumu et al. in 1996 [66]. Since then, several approaches 

ion in the bacteriochlorophyll [5]. The energy transfer rates in the 
supramolecular arrangements are as fast as the order of picoseconds 
within lifetimes of the order of nanoseconds [6-10].

 To mimic the natural system, a large number of studies have been 
devoted to create artificial, highly ordered arrays of chromophores with 
the ultimate goal to construct devices that can efficiently capture light 
and utilize the excitation energy to transfer it to a designated acceptor 
point [11]. The highly efficient cooperation between the chromophore 
units is necessary for effective transfer of excitation energy, which has 
been achieved by connecting them in a well-defined manner by means 
of covalent bonds [12].

Multiporphyrins as chemical models for photosynthesis

Porphyrins comprise an important area of research interest in 
organic chemistry due to their potential in wide range of applications 
including light-harvesting arrays [13,14], molecular wires [15-18], 
photovoltaic cells [19], nonlinear optics [20-23], and photodynamic 
therapy [24]. Porphyrins are interesting in view of visible-light (Soret 
band around 400 nm and Q-band around 500-700 nm) absorbing and 
emitting materials as candidates for the study of electron and energy 
transfer processes to serve as artificial photosynthetic building units 
as well as for opto-electronic applications [25]. In order to construct 
multiporphyrins with well-defined shape and dimensions, numerous 
synthetic approaches have been developed. These approaches include 
covalent synthesis [26,27], and self-assembly by metal coordination 
[28-30] or hydrogen bonding [31-33]. Covalent linking is the most 
classical and productive method for the synthesis of such chemical 
models [34,35].	

In the covalently linked porphyrin arrays, a variety of linkages 
such as ethyne [36,37], polyyne [38-40], ethylene [41], alkane 
[42,43] and aromatic entities [44-46] have been used to bridge the 
individual porphyrins. Lindsey et al. have reported the synthesis of 
numerous phenylene- and diphenyl ethynyl-bridged multiporphyrins 
for mimicking the biological light-harvesting antenna systems and 
their photo physical properties have been studied [46-48]. These 
multiporphyrins show efficient energy transfer that involves a through-
bond process mediated by the bridge. However, these porphyrin 
arrays show very weak ground-state electronic interactions between 
the porphyrin units. Various linear types of meso- to meso acetylene- 
and butadiyne-bridged multiporphyrins have also been reported 
and their photo physical and electrochemical properties have been 
determined [36-38]. In contrast to the arene-bridged porphyrin arrays, 
these types of multiporphyrins exhibit strong ground- and excited-
state interporphyrin electronic coupling. The studies on these highly 
conjugated multiporphyrin arrays have provided significant insights 
into the nature of the interporphyrin interactions and invaluable 
information for rational design of porphyrin-based optoelectronic 
materials.

The wheel-like chromophore arrays play an essential role in the 
efficient capturing of light energy and its subsequent funneling to the 
reaction center [49]. These structural features have motivated chemists 
to design artificial light-harvesting antennae consisting of multiple 
porphyrin units and to explore their photochemical properties to 
generate a general approach for achieving the vectorial transfer of 
energy over a long distance to a designated point. Such synthetic light-
harvesting antenna molecules contribute to a better understanding 
of the photochemical events involved in biological photosynthesis. 
The recent development of covalent (molecular) and noncovalent 
(supramolecular) approaches to the design of light-harvesting 
multiporphyrin arrays includes 1) ring-shaped [50-52], 2) star-shaped 
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have been reported to prepare such meso-meso linked porphyrin arrays, 
such as Smith’s condensation of dipyrromethane derivative with tetrakis 
(5-formyl-2-pyrrolyl)ethane [67], Osuka’s oxidative dimerization 
of monomeric porphyrins, either chemically with silver salts [68] or 
electrochemically [69], Senge’s oxidative dimerization of anionic 
adducts induced by 2,3-dichloro-5,6- dicyanoquinone (DDQ) [70] and 
Liebeskind’s solvent-dependent DDQ-induced oxidative dimerization 
of zincate substituted porphyrins [71]. The organic solubility and 
architectural rigidity of covalently linked multiporphyrinic arrays are 
two important criteria for the systematic study of efficient electron 
and energy transfer processes and the porphyrinic pigments should 
be incorporated in precise states of metalation and geometrical 
arrangement. Meso-unsubstituted diaryl porphyrins are important 
precursors for the synthesis of meso-functionalized covalently linked 
porphyrin arrays, by the use of oxidative coupling reactions in the 
presence of silver (I) salts or by anodic electrochemical oxidation. The 
Ag (I) promoted meso-meso oxidative coupling reaction of 5,15-diaryl 
zinc (II) porphyrin has been used in the synthesis of a variety of 
porphyrin arrays such as linear, 3-D extended windmill arrays, 
dodecameric porphyrin wheel and various other interesting and useful 
directly linked porphyrin arrays [72,73].

A variety of porphyrin arrays has been reported by Osuka et al. by 
the use of coupling reactions in the presence of Ag (I) salts [74]. On 
treating the zinc porphyrin possessing unsubstituted meso positions 
with Ag (I) salt, the meso-meso linked diporphyrins and oligomeric 
porphyrins have been formed. This coupling reaction is highly 
regioselective as the reaction takes place selectively at the meso position 
of porphyrin monomer. The use of iodine in combination with silver 
(I) salts or iodine reagents has also been dictated in the literature for
the formation of meso-meso linked porphyrin oligomers [72]. Various
iodine (III) reagents such as PhI(O-CO-CF3)2 (PIFA, also named as
bis[(trifluoroacetoxy)iodo]-benzene) or PhI(OAc)2 (PIDA) were used
for the coupling reactions of meso-porphyrins to form directly linked
porhyrin dimers or oligomers [75].

Meso-β doubly linked porphyrin arrays

Meso-β doubly linked porphyrin arrays have been reported in 
the literature to be synthesized from oxidative oligomerization of 
a 5,15-diaryl Ni(II) porphyrin, in which a1u HOMO of Ni(II) plays a 
central role for coupling regio chemistry and thus the formation of 
meso-β doubly linked porphyrin arrays have been limited to the use 
of nickel metalated porphyrin as precursors only. In the recent years, 
the synthesis of meso-β doubly linked zinc metalated porphyrin 

dimer 7 and anti- and syn-trimers 8 and 9 has also been reported by 
Osuka et al. through DDQ-Sc(OTf)3 oxidation of the corresponding 
meso-β singly linked porphyrin precursors under the suitable reaction 
conditions (Scheme 1) [76]. Their precursors, the meso-meso linked 
porphyrin dimer 4 and trimers (5 and 6) have been synthesized by the 
Suzuki-Miyaura coupling reaction of β-borylated porphyrin, prepared 
from 5,15- bis(3,5-dioctyloxyphenyl)-10-(3,5-dimethylphenyl)-
substituted zinc(II) porphyrin, and mono meso-brominated porphyrin, 
prepared from 5,15-bis(3,5-dioctyloxyphenyl)-10-phenyl-substituted 
porphyrin. The 1H NMR spectra of zinc metalated meso-β doubly 
linked porphyrin arrays exhibited sharper peaks than that of their 
nickel metalated analogues [77]. The meso-β doubly linked porphyrin 
arrays having zinc as central metal atom found interesting applications 
due to their significant ground-state and excited-state electronic 
properties. Various hybrid arrays of meso-meso linked porphyrin- 
[26] hexaphyrin-porphyrin along with their triply linked tapes have
also been synthesized and their absorption spectrum was noticed near
infra-red region [78].

Scheme 1: Synthesis of meso-β doubly linked porphyrin dimer and trimer.

Synthesis of meso-extended conjugated porphyrins

Meso-extended porphyrins have been formed by the reaction of 
meso-tetraethynylporphyrins with aromatic halides in the presence 
of palladium complexes and due to extended conjugation, their 
absorption spectra have been bathochromically shifted [79]. The 
red-shifted electronic absorption spectra of meso-ethynylporphyrins, 
which resulted from efficient porphyrin-acetylene conjugation, make 
them attractive for applications in light harvesting systems and 
nonlinear optics [80]. Butadiyne linkers were also used for synthesis 
of meso-extended porphyrin oligomers as reported by Anderson et 
al. [80]. Such conjugated porphyrins exhibited maximum absorption 
bands around 900 nm. Various modifications have been obtained 
using more soluble substrate such as 5,15-bis (3,5- di-tert-butylphenyl)-
10,20-bis(trihexylsilylethynyl)porphyrin with stepwise synthetic 
strategy including protodesilylation of TBAF and Glaser-Hay coupling 
conditions (Figure 2). The red shift in the absorption bands tend to be 
intensified with increase in chain length of meso-bridged butadiyne 
linkers. Peripheral extension seems to be a versatile approach for 
tuning the porphyrin absorption spectrum, and hence, various linkers 
such as ethene, ethyne, butadiyne etc. have been used to synthesize 
various porphyrin tapes and oligomers to serve efficient mimic of 
biological process of photosynthesis [81-83]. 

Synthesis of core-modified meso-linked porphyrin arrays

The modification of porphyrin core by replacing one or two inner 
nitrogens with other heteroatoms such as sulfur, oxygen, selenium, 
and tellurium forms a group of core-modified porphyrins containing 
different kinds of porphyrin cores such as N3S, N2S2, N3O, N2SO, 
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Figure 1: Meso-meso linked porphyrin arrays.
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N2OS, N3Se, N3Te, N2Se2, etc. [84]. The core-modified porphyrins 
exhibit interesting properties in terms of both aromatic character and 
their ability to stabilize metals in unusual oxidation states [85]. The 
electronic properties of core-modified porphyrins are quite different 
from normal porphyrins (N4 core). Van Patten et al. [86] on the basis 
of computational studies predicted that a set of porphyrins such as 
N4, N3O, N3S, N2OS, and N2S2 porphyrins arranged in a linear series 
with a progressive decrease in energy levels could provide the basis for 
an energy cascade. Various efforts have been directed in design and 
synthesis of unsymmetrical arrays containing two different macrocycles 
linked through meso-position such as porphyrin-chlorin [87], 
porphyrin-corrole [88], porphyrin-pheophorbide [89], and porphyrin-
phthalocyanine [90] macrocycles in the presence of palladium 
complexes, which are expected to have unusual electronic structure 
and interesting photophysical properties. These unsymmetrical arrays 
are useful to study singlet-singlet energy transfer and to obtain fast 
initial charge transfer and a slow back reaction, thus giving a long-lived 
charge-transfer state.

Electron and energy transfer processes in directly linked 
diporphyrins

The various types of diporphyrins such as TPP-type and OEP-type, 
bridged by the same conjugative spacers provide a nice opportunity 
to demonstrate and evaluate the important contribution of through 
bond-excitation energy transfer (TB-EET) in the overall energy 
transfer processes. Excitation energy transfer processes are the most 
important functions of antenna complexes. Thus, many artificial model 
compounds have been explored, which absorb visible light in a wide 
range and funnel the resulting excited state energy rapidly and efficiently 
to a designed site. There are two mechanisms for excitation energy 
transfer, Forster-type (through-space, TS) energy transfer by coulombic 
interaction between transition dipole moments and Dexter-type 
(through-bond, TB) energy transfer via electron-exchange interaction 
through direct or indirect overlap of the molecular orbitals. The 
importance of the orbital interaction on the TB-EET rate was exhibited 
by the comparison of tetraphenylporphyrin (TPP)-type diporphyrins 
versus octaethylporphyrin (OEP)-type diporphyrins, both of which 
have the same center-to center distance between the two porphyrin 
units [91]. The energy transfer rates in the TPP-type diporphyrins 
are distinctly larger as compared to their OEP-type counterparts but 
such transfer rate enhancement decreases on decreasing the distance 
between the two porphyrins [92]. This rate enhancement has been 
understood in terms of the significant contribution of TB-EET in 
TPP-type diporphyrin models. The TPP-type zinc porphyrins have an 
a2u HOMO with large electron densities at the meso-positions where 
unsaturated bridges are connected, while OEP-type zinc porphyrins 
have an a1u HOMO with nodes at the meso-positions. Therefore, the TB 
orbital interactions are effective for TPP-type diporphyrins only.	

In the β, β’-substituted OEP-type porphyrins, the bulky peripheral 
alkyl substituents suppress the through-bond electronic interactions 
due to steric hindrance and thus, the meso-aryl bridges adopt 
perpendicular conformations with respect to the porphyrin plane. The 
enhanced contribution of the Forster mechanism for excitation energy 
transfer has been accounted when the bridging group between the two 
porphyrins becomes shorter, as the energy transfer rate enhancement 
decreased on decreasing the distance between the porphyrins as in 
case of TPP-type diporphyrins. The Forster excitation energy transfer 
is highly operative for a donor-acceptor (D-A) model with quite a short 
D-A separation [91]. On the contrary, the Forster energy transfer rate
decreases quickly with increasing the distance between two porphyrin

units. Thus, the through bond-excitation energy transfer (TB-EET) 
becomes predominant for diporphyrins with long distances between 
the porphyrins because of relatively small attenuation of through bond-
excitation energy transfer (TB-EET) versus distance for diporphyrins 
with π-electronic bridges.

Various multi-porphyrin arrays have been constructed using 
several types of shorter linkers that are suitable for preparing linear or 
extended architectures via meso position attachment [92]. The overall 
orthogonal conformation between the adjacent porphyrin units in the 
orthogonal porphyrin arrays disrupts π-electron conjugation over the 
array despite of the very short inter-porphyrinic distance. Thus, the 
successful preparation of long porphyrinic arrays raises fundamental 
questions regarding exciton coupling, π-electron delocalization, and 
relative orientations between the adjacent porphyrins. The control of the 
dihedral angle of the meso-meso coupled diporphyrins is an intriguing 
factor for the systematic study of inter-porphyrinic interactions [93-
95], because it offers a fine-tuning of electronic interactions between the 
two porphyrins, which results in the manipulation of intramolecular 
excitation energy and electron transfer processes [96].

The electronic interactions between the adjacent porphyrin 
moieties in the meso-meso linked porphyrin arrays are minimum at 
perpendicular dihedral angle. Therefore, deviation of dihedral angle 
in the porphyrin ring causes a symmetry change from D2d to D2 
with a simultaneous increase in the electronic interactions between 
the porphyrins as in the case of meso-meso linked diporphyrins 
strapped with a dioxymethylene group Sn, where n is the number of 
carbon atoms in the chain (Figure 3). This change in symmetry alters 
the photophysical properties of porphyrinic arrays depending on the 
degree of electronic interactions between the porphyrins [97]. The 
directly linked orthogonal porphyrin arrays provide the prospects as 
artificial light harvesting arrays and molecular photonic wires because 
the unique photophysical aspect of these molecular arrays arising from 
substantial interchromophoric electronic interactions mimics the facile 
energy migration processes in biological light harvesting assemblies, 
where electronic delocalization is negligible due to a lack of direct bond 
linkage between individual pigment molecules [91].

Non-covalent meso-linked cyclic porphyrin arrays

The synthesis of covalently and non-covalently linked discrete 
cyclic porphyrin arrays as models of the photosynthetic light-harvesting 
antenna complexes has been well documented in the literature. A series 
of extremely long yet discrete meso-meso linked porphyrin arrays and 
covalently linked large porphyrin rings has been synthesized using 
silver(I)-promoted oxidative coupling strategy by Osuka et al. [98]. The 
photophysical properties of these molecules were studied using steady-
state absorption, fluorescence, fluorescence lifetime, fluorescence 

Figure 2: Meso-ethynyl and meso-extended porphyrins.
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anisotropy decay, and transient absorption measurements. Both the 
transient absorption anisotropy decay profiles and the pump-power 
dependence on the femtosecond transient absorption are directly 
related to the EET processes within the porphyrin framework. The 
polarization anisotropy rise time and the exciton-exciton annihilation 
time are well defined within these structures in terms of the Forster- 
type incoherent energy-hopping model.

Meso-pyridine-linked zinc(II) porphyrins and their meso-
linked dimers have been reported to get assembled spontaneously 
in the presence of non-coordinating solvents such as CHCl3 to form 
tetrameric porphyrin squares and porphyrin boxes, respectively [98]. 
In the porphyrin boxes, efficient EET throughout the cyclic porphyrin 
arrays was well recognized along with rigorous homochiral self-
sorting process. The cyclic trimer has been reported to form meso-
cinchomeronimide appended zinc(II) porphyrin. It was also shown 
that the discrete cyclic trimer, tetramer, and pentamer porphyrins 
were formed with large association constants through high fidelity self-
sorting assembling of corresponding meso-meso-linked diporphyrins. 
Meso-cinchomeronimide substituents were fully distinguished on the 
basis of enantiomeric and conformational differences. These studies 
of non-covalently linked meso-conjugated cyclic porphyrin arrays 
facilitated the basic understanding of structural features required for 
such fast and efficient electron and energy transfer processes in natural 
light harvesting complexes.

Covalent meso linked cyclic porphyrin arrays

It is established that the effective electronic coupling between 
neighboring pigments and the regular structural arrangement are 
highly required for efficient EET. Porphyrin architectures with direct 
linkage at meso positions comprise an attractive target in terms of 
higher molecular symmetry, synthetic challenge, and large electronic 
interactions between neighboring porphyrins that results in efficient 
EET [78]. In this regard, 5,10-diaryl zinc porphyrin monomer 14 was 
used as starting material and made to undergo Ag(I)-salt oxidation to 
synthesize dimer 15 in addition of small amount of trimer 16. Tetramer 
17 was also obtained with subsequent reaction of dimer under similar 
oxidation reaction conditions and hence, long porphyrin arrays with 

direct linkage at meso positions have been synthesized in this manner 
(Scheme 2). Intramolecular coupling reaction of these linear porphyrin 
arrays including trimer, tetramer have been resulted into synthesis of 
cyclic porphyrin arrays. These cyclic arrays were purified using silica-
gel column chromatography, and their structures were noticed in 
accordance with their 1H NMR spectra, which are characteristically 
simple without meso-proton signals, reflecting the symmetric cyclic 
structures [98]. 

Directly meso-meso linked cyclic porphyrin arrays have been 
known to exhibit a broad Soret band with red shift, in contrast to their 
linear meso-meso linked porphyrin array counterpart. An excitonically 
allowed state of the same energy has been shown in cyclic arrays, as 
both transition dipole moments Bx and By of porphyrins are coupled 
excitonically with their neighboring units. As described above, the 
J-type exciton coupling was exhibited along the long molecular axis
in the linear meso-meso linked porphyrin arrays, but H-type coupling
was also noticed for cyclic tetramer CZ4 and octamer CZ4. This was
probably due to deviation of dihedral angles from 90° in the neighboring 
porphyrin rings, when the array is bent. The EET rates in all these
cyclic porphyrin arrays were determined by the transient absorption
anisotropy (TAA) and the transient absorption (TA) measurements.
Transient absorption measurements have shown the singlet-singlet
excitation annihilation process due to pump power dependent decay
process with Forster-type incoherent electron and energy transfer within 
the porphyrin arrays. Unlike natural cyclic antenna system with B850,
directly linked cyclic arrays have shown quite efficient EET processes
with the rate constants of (119 fs)-1 for CZ4, (342 fs)-1 for CZ6, and (236 
fs)-1 for CZ8. This was explained in terms of extremely strong excitonic
coupling between different components of the cyclic porphyrin arrays.
The calculated dihedral angles between neighboring porphyrins and
their absorption spectra have shown that large electronic coupling
between them are of the same order as that of observed order of EET
rates with CZ4 at highest side and CZ6 at the lowest one. Pd-catalyzed
coupling reaction also gave similar kind of porphyrin octamer with
meso linkage [99]. This approach is valuable for the synthesis of hybrid
porphyrin arrays with unique structural and configurational features.

Scheme 2: Synthesis of meso-linked cyclic porphyrin arrays.

Meso linked diporphyrins to porphyrin boxes 

An angle between the ligand and the porphyrin symmetry plays 
a key role in the construction of desired molecular assembly. Self-
assembly properties can be changed dramatically by changing the 
geometry of monomer unit of multiporphyrins. Osuka et al. utilized this 
property in designing the three-dimensional porphyrin boxes. Racemic 
4-pyridine-substituted meso-linked Zn(II) diporphyrins were taken as
starting substrates to synthesize the porphyrinic boxes via self-sorting
assembling process. Dihedral angle between the 4-pyridyl group and

Figure 3: Various meso-meso linked porphyrins.
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the diporphyrin was established at 90°. It has been shown that dihedral 
angle provides an important contribution during the synthesis of 
box-shaped porphyrin assemblies. Non-coordinating solvents such as 
chloroform or benzene have been used to synthesize cyclic porphyrin 
tetramer 19 from the monomer 5-p-pyridyl-15-(3,5-dioctyloxyphenyl) 
zinc(II) porphyrin 18 (Scheme 3). 

Scheme 3: Synthesis of porphyrin tetramer.

Similarly, a series of 5-p-pyridyl-15-(3,5-dioctyloxyphenyl) zinc(II) 
porphyrin squares were reported to synthesize and their structures 
have been confirmed by X-ray crystal structure analysis. The cyclic 
porphyrin tetramer 19 was characterized by using 1H NMR and UV-vis 
absorption spectral analysis [100]. Porphyrin monomer 18 and other 
analogues have also utilized for Ag(I)-promoted coupling reaction to 
produce meso coupled diporphyrins in good yields respectively along 
with higher oligomers. Further, porphyrin dimer has been shown to 
undergo aggregation to produce a rigid tetrameric conformation with a 
larger association constant which was characterized by using cold spray 
ionization mass spectroscopy (CSI-MS) and 1H NMR spectroscopy. 
The formation of rigid self-assembled structure was further confirmed 
by fluorescence spectroscopy. On the basis of similar pattern, porphyrin 
boxes have been produced upon aggregation in solution, which were 
characterized by 1H NMR spectroscopy [101]. 

Conclusion
In summary, synthesis and spectral properties of meso linked 

multiporphyrins are reviewed. It was noticed that porphyrins having 
free meso positions are important precursors for the formation 
of diporphyrins and other higher oligomers with different shapes 
including linear, cyclic and boxes and hence, act as an efficient model 
for light harvesting systems. Study of efficient electron and energy 
transfer processes in various covalently and non-covalently linked 
meso-conjugated porphyrin arrays provided an insight view of mimics 
of light harvesting complexes.
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