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Abstract

Histones are proteins that bind to DNA and form nucleosomes. There are several types of histones that differ in
chromosome distribution and timing of their expression. In Drosophila, each canonical type histone is identical or
highly similar in amino acid sequence to its corresponding replacement type histone; however, gene structure and
codon usage differ between the two types of histones. Identification of the evolutionary changes responsible for the
differences between these two histone types will lead to an understanding of the development of epigenetic
regulation. Here, recent findings regarding codon usage for canonical and replacement types of histones are
outlined for study of the evolution of these histone genes and their epigenetic regulation in Drosophila.

Keywords: Histone gene; Codon usage; Drosophila; GC content;
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Introduction

The molecular mechanism of epigenetics caused by histone
modification and replacement is one of the important problems to be
solved in the fields of cell biology and molecular biology. Several types
of histones are found in Drosophila; one type is expressed dependently
with  chromosome replication, another type is expressed
independently, and other types are histones specific for the centromere
region (CEN-P) or are histone-like proteins [1-11]. Most of the early
histone studies investigated the replication-dependent type in sea
urchin, Xenopus and Drosophila, and therefore this type is called a
‘canonical’ histone. The other histone type, which is expressed
independently of replication, was called a ‘variant’ or a ‘replacement’
because of some amino acid substitutions compared to the
corresponding canonical histone [12]. The codon usage for the two
histone types is reviewed here; however, many interesting results have
also been reported regarding CEN-P and histone-like proteins
[3,5,11,13-17]. In addition to the normal ‘functional’ histone genes,
broken genes or pseudogenes have also been found in a genome [18].
The histone genes for canonical histones in Drosophila have been
reviewed elsewhere [19]. These genetic differences will be helpful for
understanding the evolution of these histone genes and their epigenetic
systems in Drosophila.

Modification and Replacement for Histones

Information other than that on the genetic level has been found to
be related to a variety of biological phenomena such as gene expression
and cell differentiation [20-28]. Histone modifications and
replacements belong to such mechanisms [25,26,29-39]. A
chromosome is formed from chromatin, which is modelled from
histones and DNA [40,41]. Chromatin remodeling is triggered by
subtle changes in nucleosome structure such as modification/
unmodification of amino acids or replacement histones [29,32,42-50].

Histone modifications occur at Lys, Arg, Thr, and Ser sites by
modifications such as methylation, acetylation, phosphorylation, and
ubiquitylation. Effects of histone modifications on chromatin
remodeling differ significantly depending on which amino acid is
modified or unmodified, which amino acid position is modified, and
what kind of modification or unmodification occurs [24,30,51-54]. A
replacement of a histone with a different type of histone also causes
chromatin remodeling [12,50,55-64].

In Drosophila melanogaster five histones, H1, H2A, H2B, H3, and
H4, are known as canonical type histones [1,40] and four histones,
H2AvD, H3.3A, H3.3B, and H4r are known as replacement type
histones (Table 1) [65-68]. A replacement type for H2B has not yet
been found in Drosophila; however, a pseudogene for H2B was found
[18].

Canonical Type Replacement Type
H1 -

H2A H2AvD

H2B -

H3 H3.3A, H3.3B

H4 Har

Table 1: Genes for canonical type histones and their corresponding
replacement type histone in Drosophila.

Gene Structure for the Canonical and Replacement
Histone Types in Drosophila

Large differences in the structural genes of histones in Drosophila
have been found between the canonical and replacement histone types
[65-72]. The structures of the genes for the canonical histone types in
D. melanogaster, a typical species of Drosophila, are shown in Figure 1
and those for the replacement types are shown in Figure 2. The basic
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structure of histone genes seems to be the same among different
Drosophila species [71-78].

D. melanogaster

L [T ]
—>———— ——

500bp

’ Histone gene cluster ‘

Figure 1: Structure of the genes for the canonical type histones in
Drosophila melanogaster. A repeating unit encodes the five histone
genes and is repeated about 110 times. Arrows show the direction of
transcription.
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Figure 2: Structure of the genes for the replacement type histones in
Drosophila melanogaster. The coding region is colored red and the
untranslated region is colored vyellow. The orientation of
transcription is indicated by arrows.
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Genes for the canonical histone type are clustered by tandem
duplication, and a repetitive unit is 5 kb (L) or 4.8 kb (S) in D.
melanogaster. The difference between the L and S units is due to the
presence or absence of a tRNA-derived element [69]. The histone gene
cluster is located at the D-E region of chromosome II and the unit is
repeated more than 100 times [79,80]. An ordinary repeating unit
codes for 5 histone genes, termed a ‘quintet’ (H1, H2A, H2B, H3, and
H4), and an exceptional unit codes for 4 histone genes, termed a
‘quartet’ (H2A, H2B, H3, and H4). In Drosophila virilis and
Drosophila americana, quintets and quartets coexist in the genome
[27,75,81,82]. A similar quartet cluster was also found in Mytilus edulis
[83]. The repeating units of the cluster in a species are highly similar in
terms of DNA sequence and have evolved in a concerted fashion
[70,74,77]. No intron has been found for any gene for the canonical
histone type. A hair-pin loop structure is present in the downstream
region of each histone gene and transcription stops at that point
[69,84]. A poly(A) tail is not usually added in the transcripts of

canonical histones [85] although some exceptions have been reported
[86]. The presence of a signal for polyadenylation has been indicated
(69,86].

On the other hand, the genes for the replacement type histones are
either single copy (H2AvD and H4r) or a few copies (H3.3A and
H3.3B) [65-68], and have evolved independently of those for the
canonical type [87-89]. These histone genes are split by 1-4 introns
[65-68] (Figure 2) and a poly(A) tail is added to the transcripts [65,67].

The GC Content at the 3" Codon Position of the
Histone Genes in Drosophila

The GC content at the 3™ codon position of the genes for the
canonical and replacement histone types was analysed and compared
for 12 Drosophila species [87-89] for which the genome project has
already been completed. Analyses for the H1 and H2B genes have not
been presented before because of the absence of corresponding
replacement histones. Results for these genes are shown together with
those for the other histone genes in Figure 3. The GC content at the 3™
codon position is clearly affected by at least two factors; one factor is
‘species’ and the other factor is ‘genes’ [76,90,91]. In the species
comparison, the GC content for any histone gene in Drosophila
willistoni was considerably lower than that for other species (Figure 3).
The same tendency for a drop in GC value in D. willistoni has been
reported for other genes [92,93]. Table 2 shows the GC content at the
3" codon position for each histone gene averaged over the 12
Drosophila species. For any comparison of canonical and replacement
type histones, the GC content of the replacement type is always higher
than that of the canonical type. Comparison of the average GC content
of the two types shows that the average GC content is 8.9% higher in
the replacement type (62.8%) than that in the canonical type (53.9%)
(Figure 3 and Table 2). The highest GC content among the canonical
types was observed for H2B (61.7%). The reason for this finding is not
known. One possibility is the absence of a corresponding replacement
type in spite of the fact that H2B is a core histone. The lowest GC
content among the canonical types was observed for H1 (48.0%). This
finding is probably related to the fact that the expression level of H1,
which functions as a linker, is half that of the core histones. As
described below, the GC content at the 3rd codon position is relevant
to the usage of codons.

Histone gene Canonical type Replacement type
H1 0.480 - -
H2A 0.529 - 0.617
H2B 0.617 - -

A 0.667
H3 0.521 B 0.636
H4 0.491 - 0.591
Mean type 0.527 - 0.628
Mean type
(Without H1) 0.539 - -
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GC content at the 3rd codon

~—D. melanogaster
——D. simulans
~—D. sechellia

D. yakuba
—D. erecta
——D. ananassae
——D. pseudoobscura
—D. persimilis
—D. willistoni
——D. mojavensis
—D. virilis
——D. grimshawi

Figure 3: GC content at the third codon positions of the nine
histone genes in Drosophila. The diagram shows the proportion of
G or C at the third codon for each histone gene in 12 Drosophila
species.

Codon Usage of the Histone Genes in Drosophila

Codon usage for nine histone genes, five canonical (H1, H2A, H2B,
H3, and H4) and four replacement (H2AvD, H3.3A, H3.3B, and H4r)
genes is shown in Figure 4. A group of two synonymous codons is
shown on the left-hand side. Groups of three, four, and six
synonymous codons are shown on the right-hand side. For
convenience, a 3" codon with A or U is indicated at the lower end of
each bar, and a 3" codon with a G or C is indicated at the upper end of
each bar. In this way, the GC content at the 3’4 codon can be imaged by
summing the G and C blocks at the upper end of the bars. Codon
usage cannot be compared for Cys, because of no usage or a small
number. When codon usage of the two histone types is compared,
generally speaking G or C is used more frequently at the 3'¢ codon
position for the replacement type than for the canonical type. In some
exceptional cases, although the number of cases is small, the usage of a
synonymous codon was almost the same for the two histone types (for
example, in a comparison of codons for Glu between H2A and H2AvD,
or of codons for Tyr between H3 and H3.3B) or showed an inverse
tendency (in comparisons of codons for Asp or Ile between H3, H3.3A,
and H3.3B). Therefore, the GC content difference of the 314 codon
between the two types seems to reflect a general tendency rather than
reflect several unique usages for a specific amino acid.

These codons are indicated by “U/A and ""C/G, respectively.
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Figure 4: Comparison of the codon usage of nine genes for canonical and replacement histone types summed over 12 Drosophila species. The
codon usage (%) for each of 17 amino acids is indicated. The codon usage for cysteine is not compared because of the small number of cysteine
use. The colour is based on the nucleotide at the 3rd position in the codon (XXU, XXA, XXC, and XXG). For amino acid groups with 6
synonymous codons, two more synonymous codons are shown based on the nucleotide at the third position in the codon, either U/A or C/G.
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Codon Usage at the Histone Modification Sites

The relationship between codon usage and histone modification (at
Lys, Arg, Thr, or Ser) was analysed for four histones in Drosophila

[87-89]. The modification pattern of Lys was complicated because of
many sites of modification; several kinds of modifications such as
methylation, acetylation, phosphorylation, and ubiquitylation; and
multiple modifications at a single site such as 1-3 methylations,
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methylation and acetylation [20,45,46,51,52,94]. Although the
relationship was not clear-cut, when the codon AAA was frequently
used, this Lys site tended to be modified.

Thirteen arginine sites are known to be methylated in a total of four
histones. The amino acid at position 73 of H2B in Drosophila is
substituted with a different amino acid from arginine and therefore

this site is not methylated. At three arginine positions in canonical type
histones, position 76 in H2A, 128 in H3, and 92 in H4, the arginine
codon AGA was used the most. All three of these positions were
modified (Figure 5). Thus the codon AGA was used with a frequency
of more than 50%, only for modified sites. There may thus be a
relationship between AGA codon usage and arginine methylation.
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Figure 5: Codon usage for the modified or unmodified arginine sites in histones summed over 12 Drosophila species. The position numbers
for arginines in the canonical (C) or replacement (R) histone types, and the codon usage for these arginines are indicated. The codon usages
(%) are labeled with the same colours as in Figure 4. The protein length of H2A in Drosophila differs from that of human/mouse H2A by six
amino acids. Indels in human/mouse and Drosophila may cause gaps in the amino acid numbers defined from the N-terminal end for each
species; therefore, caution is needed regarding the amino acid position numbers of the modification sites. The “M” on the X axis refers to a site
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Five serine sites are phosphorylated in total (position 1 in H2A, 33
in H2B, 10 and 28 in H3, and 1 in H4). There is an amino acid
substitution for the non-modified amino acid at position 14 of H2B.
For the canonical type, the codons UCU and AGU are used more than
the other codons for serine at 7 sites, and 3 of these sites (position 1 in
H2A, 28 in H3, and 1 in H4) correspond to sites of serine modification
(Figure 6). There is thus possibly a connection between the
phosphorylation of serine and the usage of UCU and AGU codons.

Four threonine sites are phosphorylated in total (position 119 in
H2A, and 3, 11, and 118 in H3). There was no obvious tendency for
specific codon usage for threonine. In Drosophila H4, the amino acid
at position 47 is substituted with a non-modified amino acid and
therefore this site would not be phosphorylated.

In the future, it is anticipated that new histone modifications and
more biological meanings for histone modification will be found. As
for the timing of these modifications, it was recently reported that a
certain modification (H3K9) occurred during translation, but not post
translation [95]. The possible connection between modification and
codon use such as between methylation of Arg and the use of AGA,

and between phosphorylation of Ser and UCU or AGU usage
suggested that histone modification might be associated with a specific
tRNA, leading to one of the modification mechanisms at a specific site
in the protein. It is a possibility that some amino acids within histones
are modified during translation.

Histone Genes and Epigenetics Evolution

Gene structure of the two histone types is very different. Large
amounts of the canonical histones need to be produced within a short
period during early development in Drosophila. This can be
accomplished by multiple gene copies, tandem gene clusters, and no
splicing. On the other hand, large amounts of the replacement histones
are not required; however, they should be expressed at the proper time.
Therefore, for the replacement histones, a single or a few gene copies
should be sufficient or better than multiple gene copies.

Exon-intron structure is also remarkably different between the
genes of the two histone types; no intron has been found for the
canonical type, but 1-4 introns have been found for the replacement
type. Therefore, control of histone expression by splicing is only
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possible for the replacement type. Although the detailed mechanisms
regarding the control of histone expression by splicing remains

unknown, several conserved sequences at splicing sites have been
found for the replacement type [87-89].
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Figure 6: Codon usage for the modified or unmodified serine sites in histones summed over 12 Drosophila species. The position numbers for
serines in the canonical (C) or replacement (R) histone types, and the codon usage for these serines are indicated. The codon usages (%) are

R116 R124

H3.3A H3.3B H3 H3.3A H3.38 H3

R137

cm 31 CIR 87 cm 88 C/R 87 C/R 96

AGC mUCC mUCG

Transcriptional control plays an important role in controlling the
expression of the canonical type [19,69]. However, a transcriptional
control region was not found in the upstream region of the genes for
the replacement type histones [87,88] except for the H2AvD gene [89].
Thus, for the replacement type histones, transcriptional control is only
possible for the H2AvD gene since this is the only replacement type
histone gene to have a conserved transcriptional control sequence
upstream of the H2AvD gene [89].

Another difference between canonical and replacement type
histones is their codon usage. The replacement type used G or C at the
3rd codon position more often than the canonical type. Codon use
may affect the translation efficiency in conjunction with the
composition of tRNA pools in the cell. Furthermore, the extraordinary
biased codon usage at the sites of histone modification suggested a
functional difference in codon usage.
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