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Despite the remarkable achievements of modern computational 
methods in predicting prokaryotic genes, evolutionary conservation 
and other analyses suggest that a significant number of genes are 
missing from published genome annotations [1-3]. Particularly 
in genomes of high GC content, the presence of coding regions 
missing from annotations can often be identified simply and reliably 
by graphically matching annotated coding regions to appropriately 
visualized compositional properties of the genome sequence, with the 
method of “frame analysis” [4]. With this method the GC content of 
the sequence is measured within a moving window (say, about 200 nt 
wide) in three subsequences, each composed of every third nucleotide, 
and starting, respectively, at the first, second, or third position of the 
genome sequence. The GC contents of the three subsequences are 
plotted along the genome generating three “curves” called “S-profiles” 
[5]. Whenever a coding region is traversed, each of the three sub-
sequences will be superimposed to first, second, or third positions of 
the codons, depending on the coding strand and phase of the gene. 
Thus, each S-profile will represent the GC content of one of the three 
codon positions of the gene. Since in coding regions of high GC 
content the three codon positions have very different GC content, very 
high in third and relatively low in second codon positions (Figure 1), 
this will reflect in characteristic contrasts between S-profiles, visually 
corresponding to characteristic “bubbles”, informative of the presence, 
phase, and coding strand of the underlying gene (Figure 2). When 
annotated genes are matched to the S-profiles, missed genes will become 
obvious, as unmatched bubbles. To facilitate using frame analysis on a 
genomic scale and extend its usage to sequences of any composition, 
we recently developed a method for quantifying and generalizing the 
information provided by frame analysis [3], and implemented these 
methods in the N-Profile Analysis Computational Tool (NPACT), 
available at http://genome.ufl.edu/npact/, which identifies sequence 
regions with significant 3-base periodicity (“Hits”) corresponding to 
S-profile bubbles, looks for associated open reading frames (ORFs), 
compares them to genome annotations, and displays missing ORFs and 
corresponding hits together with S-profiles and pre-annotated genes.

Applying our methods, we identified in 1,000 genomes of any GC 
content, a plethora of significant 3-base periodicities corresponding to 
non-annotated ORFs, of which more than 46,000 were evolutionarily 
conserved in sequence and in length across bacterial genera or phyla, 
thus “discovering” in these genomes many “new” genes, and providing 
a useful tool for the amelioration of prokaryotic genome annotations. 
ORFs associated with significant three-base-periodicities are many 
more than those conserved, and we estimate that many are likely not 
to encode genes (they may for example indicate the presence of pseudo 
genes, or overlap in different frames regions of anomalous composition 
of true genes). However, an integral part of the method implemented 
by NPACT is the visual representation and comparison of 3-periodic 
ORFs with corresponding regions of significant periodicity, frame 
analysis profiles, and the position of pre-annotated genes, by which 
the “quality” of the newly-identified ORFs can be evaluated. Because 
“newly-identified” ORFs can be added to a pre-existing collection of 
genes, we expect the method to be at least as sensitive as the method 
used to obtain the set of pre-annotated genes. Since our method includes 
human intervention, its specificity is difficult to estimate across all 
genomes we tested, and depend on how the visual information if offers 
is evaluated by the user. In our detailed analysis of two strains of A. 
dehalogenans [3], a “quality” was assigned to each newly identified ORF, 

representing our confidence that it encoded a gene, uniquely based 
on visual analysis of compositional contrasts and relation of the ORF 
with neighboring genes. We then compared ORFs of different qualities 
with information from conservation and found that the vast majority 
of ORFs of good or best quality were also conserved, thus most likely 
improving on the sensitivity of the annotation, with a low rate of false 
positives (high specificity). However, when we compared our collection 
of “new” genes with collections of genes automatically predicted in 
the same genomes by the popular gene prediction methods Prodigal 
[6], Glimmer 3.0 [7], GeneMark HMM [8], and GeneMark 2.5 [9], 
we found in these collections 80% of our conserved newly-discovered 
genes, and 48,000 of our newly-discovered non-conserved 3-periodic 
ORFs. In fact, about 75% of all conserved genes were predicted by 
all popular prediction methods, indicating that corroboration of 
prediction by multiple methods increases the probability that a gene is 
correctly predicted. 

Among all distinct genes predicted by Prodigal, Glimmer 3.0, 
GeneMark HMM, or GeneMark 2.5 in the 1000 genomes, there are 
about 20% more genes than those annotated with the same genomes. 
One third of the genes excluded from the annotations are uniquely 
predicted by Glimmer 3.0, but more than 25% are predicted by all 
methods (including the earlier method GeneMark 2.5), suggesting that 
the exclusion of many predicted genes from published annotations is 
not a consequence of the unavailability of the most sensitive methods 
at the time of annotation. Annotators may have had good reasons for 
excluding many predicted genes. Specificity of prediction methods 
(which predicted genes are false?) is difficult to evaluate, and in fact 
it may be that quality controls implemented in annotation pipelines 
improve specificity more than they decrease sensitivity. We found 
that more than 80% of the excluded predicted genes indeed are not 
conserved across genera. It is however surprising that almost 20% of 
the excluded predicted genes are highly conserved in sequence and 
in length, and that among them many are well-characterized genes. 
Among our newly-predicted ORFs, those that are conserved and 
predicted are also among the longest (with an average length of 693 nt), 
excluding the possibility that they had been rejected from annotations 
because they were shorter than a pre-established minimum-length 
threshold.

Our analyses indicated that sensitivity of prediction methods 
may not be the most significant limiting factor in achieving accurate 
annotations, and that many genes may be excluded from genome 
annotations because of how difficult and time consuming it is to 
distinguish true genes from false predictions on a genomic scale. Most 
prokaryotic genomes contain thousands of predicted genes, and their 
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conservation analysis through similarity searches can require hours of 
computational time, and of tedious expert analysis. This process can be 
expensive in terms of human resources, prone to shifting qualitative 
assessments and dependent on arbitrary decisions on thresholds 
of “significance” (e.g., minimum levels of similarity for assessing 
conservation). It appears quite possible that the development of tools 
that help annotators in comparing multiple sets of gene predictions and 
in exploring sequence features across entire genomes, such as Artemis 
[10] or NPACT [3], may have a greater impact on the amelioration of 
genome annotations than any remaining improvement in sensitivity of 
computational prokaryotic-gene-prediction methods.
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Figure 1: The average GC contents at the three codon positions, measured 
over all coding regions annotated within a genome, is plotted against the overall 
GC content of the same coding regions, for 200 genomes.
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Figure 2: Phase-specific S-profiles of a segment of the Anaeromyxobacter 
dehalogenans 2CP-C genome, matched to annotated coding sequences (“Input 
file CDSs”), represented as arrows pointing towards the 3’ end of the gene and 
colored according to the S-profile of the subsequence coinciding with their third 
codon positions (see text). Sequence segments of statistically significant 3-base 
periodicity (“Hits”) corresponding to regions of contrast between S-profiles are 
also represented and colored according to the expected phase and coding 
strand of a coding region of that composition. One such segment corresponds 
to an ORF not included in the published annotation (“Newly identified ORF”).
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