Unraveling the Progression of Ischemic Core Genome-Wide by Bioinformatics Analysis of Permanent Middle Cerebral Artery Occlusion (PMCAO) Mouse Model Brain Regions Genes

Motohide Hori1,2, Tomoya Nakamachi1,2, Junko Shibato2,4, Randeep Rakwal2,4,5,*, Seiji Shioda2,4 and Satoshi Numazawa1

1Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan
2Department of Anatomy I, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, Japan
3Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama, Japan
4Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo, Japan
5Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

Keywords: Brain ischemia; Ischemic core and penumbra; DNA microarray; IPA analysis, PACAP38

Introduction

The neuropeptide, pituitary adenylate-cyclase activating polypeptide (PACAP) [1-3], is the major focus of research as a neuroprotective factor in the group of Prof. S. Shioda [4-16]. A major emphasis of the research is on the neuroprotective effects of PACAP38 on the brain, particularly in brain ischemia [17]. Therein, a permanent middle cerebral artery occlusion (hereafter referred to as PMCAO) mouse model has been established and used for unraveling of the genome-wide gene expression profiles by high-throughput omics approach, namely DNA microarray technology. DNA microarray analysis of the whole brain/ischemic hemisphere and specific brain regions of the ischemic core hereafter, the IC and penumbra hereafter, the P with or without PACAP38 treatment have been performed [11-16]. It is to be noted that the reason for utilizing intraluminal filament technique-based PMCAO model over the transient MCAO is to avoid perforation injury, in our research model (PMCAO). However, it should be emphasized that different research groups are using different stroke models such as the MCAO, resulting in greater insight into how PACAP treatment influences the brain ischemia. Overall, these genomic data on differential gene expression in the brain of mouse PMCAO model resulted in us i) obtaining the transcriptome profiles of ischemic brain hemispheres along with the diverse categories of gene families being modulated under the ischemic condition [11-13], ii) unraveling specific gene expressions and localization of molecular factors in the IC and P effected specifically by the PACAP38 treatment [14,15], and iii) providing the explanation and validation of the dye-swap, two-color DNA microarray approach [16]. The vast inventories of differential gene expressions generated from these numerous analyses have not only revealed the importance of both whole hemisphere and region-specific analyses in genome-wide identification of target molecular factors that might play a role in the neuroprotective function of PACAP38, but also provided a valuable resource for further study by the scientific community.

Short Communication

Our most recent data analyzing the specificity of the PACAP38 treatment in delineating the molecular expressions in the IC and the P at 6 h post-treatment (early) and 24 h (late) progression of the ischemia revealed that PACAP38 indeed has a positive influence in helping recover the ischemic insult [15]. However, we did not clarify the progression of ischemia itself, i.e. in the absence of any treatment (PACAP38). As also kindly suggested by an anonymous reviewer in our previous research paper [15] it would be important to investigate the progression of ischemia in order to effectively understand the neuroprotective effects of PACAP38, the overall goal of the research. Therefore, in this communication, we primarily present the DNA microarray analysis data of the IC and P regions at 6 h in the ischemic brain compared to the healthy IC and P regions, as outlined in the experimental design (Figure 1). In other words, our research aimed to unravel differential gene expression profiles in the IC and P regions without PACAP38 treatment in order to know which genes are specifically functioning during progression of the ischemic core. To do so, we carried out a whole genome DNA microarray analysis (Agilent mouse whole genome 4x44K DNA chip; G4131F) of the healthy versus ischemic IC and P regions. Briefly, three mice each in PMCAO groups for IC and P regions in the ischemic brain over corresponding controls were used that exhibited neurological grades G1 and G2, for the subsequent downstream analysis. Ischemic core and P regions and corresponding healthy core and P regions were carefully removed with a sterile scalpel, and placed in sterile 2 ml Eppendorf tubes. Samples were

*Corresponding author: Randeep Rakwal, Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan, Tel: +81-029-853-2681; E-mail: plantproteomics@gmail.com

Received September 09, 2015; Accepted October 16, 2015; Published October 19, 2015

Citation: Hori M, Nakamachi T, Shibato J, Rakwal R, Shioda S, et al. (2015) Unraveling the Progression of Ischemic Core Genome-Wide by Bioinformatics Analysis of Permanent Middle Cerebral Artery Occlusion (PMCAO) Mouse Model Brain Regions Genes.Transcriptomics 3: 112. doi:10.4172/2329-8936.1000112

Copyright: © 2015 Hori M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
then quickly immersed in liquid nitrogen and stored in -80ºC prior to further analysis. Animal care and experimental procedures were used as approved by the Institutional Animal Care and Use Committee of Showa University (School of Medicine), Tokyo, Japan, and the PMCAO model mice, (PACAP38 treatment), dissection of brain, sampling and storage, and total RNA extraction followed by DNA microarray analysis was performed using our established dye-swap approach as described previously [11-16]. The outputs of DNA microarray analysis are freely available to the public under the series number GSE 67421 [18] at the NCBI GEO public functional genomics data repository [19].

Additional bioinformatics analysis was carried out using the Ingenuity Pathway Analysis (IPA; Ingenuity® Systems, www.ingenuity.com; Content version: 23814503, Release Date: 2015-03-22, Qiagen) bioinformatics tool that provided us with the latest annotations of genes. The biological function and network analysis were also generated through the use of IPA. The data set from microarray (6 h, IC and P), which is the differentially expressed (≥1.5/≤0.75-fold compared to saline control) genes, and their corresponding fold change values were uploaded as an Excel spread sheet into the IPA tool. To create gene networks, genes were overlaid onto a global molecular network developed from information contained in the ingenuity knowledge base. The functional analysis identified the biological functions that were most significant to the data set (p-value < 0.05) according to Right-tailed Fisher’s exact test. Further, we also used the PACAP38 treatment data (GSE 62884) for the IC and P regions to generate a parallel list of annotated genes. In this PMCAO-PACAP38 model, an intracerebroventricular PACAP38 (1 pmol) injection over a control saline (0.9% sodium chloride, NaCl) treatment was used.

Results presented in Figure 2A show the number of differentially expressed (up- and down-regulated) annotated genes in the IC (456) and P (667) compared to the whole brain (hemisphere, 881). Similarly, in Figure 2B, the number of differentially expressed annotated genes after PACAP38 treatment for the IC (582) and P (501) compared to the whole brain (hemisphere, 800) is presented. These genes are presented as a list of color-coded up-/down-regulated genes along with their Entrez gene names, Agilent probe number and fold-change, for clarity in Supplementary Tables 1 and 2 (Figure 2A) 3 and 4 (Figure 2B).
Acknowledgments

MH gratefully acknowledges the members of Professor Seiji Shioda’s laboratory (at the Department of Anatomy I) for their support and encouragement during this study. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI: 23249079, 24592681, 24592680), and by the MEXT-Support Program for the Strategic Research Foundation at Showa University (2012-16) to SS. RR (KAKENHI: 23249079, 24592681, 24592680), and by the MEXT-Support Program during this study. This work was supported by Grants-in Aid for Scientific Research (KAKENHI: 23249079, 24592681, 24592680), and by the MEXT-Support Program for the Strategic Research Foundation at Showa University (2012-16) to SS. RR (KAKENHI: 23249079, 24592681, 24592680), and by the MEXT-Support Program during this study. This work was supported by Grants-in-Aid for Scientific Research, KAKENHI (C): 267472745 for conducting this research.

References

Table 1. The top molecules identified in the IPA analysis for the ischemic core (IC) progression. The penumbra (P) top molecules are also presented for comparison.
Citation: Hori M, Nakamachi T, Shibato J, Rakwal R, Shioda S, et al. (2015) Unraveling the Progression of Ischemic Core Genome-Wide by Bioinformatics Analysis of Permanent Middle Cerebral Artery Occlusion (PMCAO) Mouse Model Brain Regions Genes. Transcriptomics 3: 112. doi:10.4172/2329-8936.1000112

OMICS International: Publication Benefits & Features

- **Unique features:**
 - Increased global visibility of articles through worldwide distribution and indexing
 - Showcasing recent research output in a timely and updated manner
 - Special issues on the current trends of scientific research
 - 700 Open Access Journals
 - 50,000 editorial team
 - Rapid review process
 - Quality and quick editorial, review and publication processing
 - Indexing at PubMed (partial), Scopus, DOAJ, EBSCO, Index Copernicus and Google Scholar etc
 - Sharing Option: Social Networking Enabled
 - Authors, Reviewers and Editors rewarded with online Scientific Credits
 - Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsgroup.org/journals/submission/