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Large and extensive injuries are the most surgical challenges both 
in humans and animals. There are many different conditions that 
make a tissue loss including massive traumatic injuries, cancers, and 
degenerative diseases. Tropical diseases could also be considered as the 
risk factors of inducing large tissue losses [1-3]. Some physiological 
conditions such as aging, obesity and repeated pregnancies are also 
other predisposing items which facilitate injury induction and may 
result in tissue losses [4]. All these deficits if they are large, their repair 
is of great concern. Perhaps some of the small soft tissue defects could 
be repaired by direct suturing, however in such large deficits, the 
primary surgical repair is of low value [5]. 

The classical reconstructive surgery is used to repair such large 
defects and the auto and allografts are gold standard methods. However, 
transplantation has its own limitations and in some conditions these 
limitations are significant and depend on the patient inclination, 
surgeon’s experience, equipments, and many other factors [6]. Such 
limitations include availability of the grafts at the time of surgery, donor 
site morbidity, cosmetic and biomechanical concerns, transmission 
viral diseases such as HIV and hepatitis, ethical concerns and cost. 
Also some of these grafts may not be effective and be resorbed by the 
body immune response after transplantation [6]. One of the major 
limitations of the grafts is that they cannot design to be best suited 
according to the recipient physiologic and functional characteristics so 
that the healed tissue may not have the same functionality as that of 
the original tissue [6,7]. Xenografts are another option but with higher 
limitation than those of the auto and allografts and higher rejection rate 
could be expected after their application [8]. 

Tissue engineering is an option and it has a well-documented 
history [7]. The classical tissue engineered products are only limited to 
acellularization of the xeno- or allografts [6,9]. In this technology, the 
cellular structures as the major antigenic source of the graft is rinsed 
from the tissue but the architectural structure of the graft is kept intact 
and redesigned in a manner to be best suited to the area of application. 
However, their application in animal study faced with unclear results 
[6,9]. The newer approaches degrade the biological tissue elements 
in order to purify the specified molecules such as collagens, with the 
aiming to redesign a new scaffold for tissue repair. In such technologies, 
the architectures of the graft could be engineered in order to simulate 
the normal physiological architecture of the recipient tissue [10]. Based 
on the type of manufactured molecules and processing technology, 
different types of bi or tridimensional scaffolds could be produced [9]. 

Collagens are major biologic molecules that present in almost all 
body tissues and are biocompatible, biodegradable and safe with the 
aiming to be applicated in tissue engineering [6,9,10]. There are many 
biomaterials in this field which are either biologic based or synthetic 
based. Biologic based materials are well tolerated by the body but their 
processing face with some limitation including cost and availability 
[6]. The synthetic materials such as polydioxanone, polyglactin and 
nyolon, some are absorbable, and some are not absorbable but all of 
them if are used in large scales could initiate significant tissue reactions 

[6,9,10]. Their merit is related to the high compatibility to engineering 
processing. They can polymerize in order to produce any size of fibers 
and can easily arrange in order to produce any types of scaffolds [9]. The 
more recent products combined the biologic and synthetic compounds 
to increase the characteristics of the scaffolds such as their architecture 
organization, biocompatibility and handling [11,12]. 

Generally there are two types of scaffolds in tissue engineering. 
Some of them are bidimensional structured and their main purpose 
is to guide regeneration of the healing tissue in order to establish the 
continuity of the defect area and their more important role is to reduce 
adhesions. They are mainly applicable in cutaneous wounds and for 
tendon and bone healing and for this reason they are wrapped around 
the defect area [5,13]. In such tissue deficits such as tendon, bone, or 
cartilage defects, with large scale tissue loss, the tridimensional scaffolds 
are of great value compared to the bidimensional types because they 
can collaborate in healing response and also they have alignment effect 
more than bidimensional types [14,9]. 

In the newer approaches, the tridimensional scaffolds have been 
combined with the bidimensional ones to increase their efficacy in 
aligning the regenerated tissue and improve their inhibitory role in 
adhesions formation to the surrounding areas. Two major technologies 
have been used to produce these composites including the electro 
spinning and gelling system [6,10,11,15]. The first technology is used to 
produce the highly aligned scaffolds that are best suited for producing 
bidimensional scaffolds and the second one is best suited to produce 
tridimensional scaffolds with the aiming to culture the stem cells in 
order to produce living tissue engineered grafts [9,11,15]. Both of them 
have limitations and selection of each depends on the application 
purpose. 

There are several healing promotive factors that can be assembled 
to these scaffolds and delivered at the defect area at specific times to 
increase the healing rate [16-19]. Although there are many commercially 
available tissue engineered products however, the basic in vivo and 
clinical researches are rare; therefore, their efficacy in reconstruction of 
such tissue deficits is questionable [6]. Most of the present investigations 
are in vitro experiments and did not consider the host immune reaction 
in response to tissue engineered graft implantation [9]. It should be 
stated that the knowledge of tissue healing is important to design well 
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comprehensive detailed study and animal studies are of great value in 
such circumstance. Although several in vitro researches exist but tissue 
engineering are still in its elementary phase and could be improved in 
order to create a new insights with the aiming to initiate a revolution 
in surgical reconstruction of such large tissue injuries, in near future.
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