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Abstract

Background: Dengue is the most rapidly expanding and spreading mosquito-borne viral disease in tropical and
subtropical countries. In Taiwan, dengue incidence clustered in Southern part, especially Kaohsiung in the past decade.

Aim: The spatial and temporal patterns of dengue transmission in Taiwan from 2005 to 2012 were examined to
investigate the occurrence of dengue fever (DF) patients and its association with immature and adult mosquito indices,
and its interaction with meteorological factors and household density.

Methods: Three databases were spatially and temporally linked, including the comprehensive chart records of DF
cases and vector surveillance data in Kaohsiung, as well as the meteorological and environmental information from
2005 to 2012. A case-crossover study design was used to explore the effects of mosquito indices and weather on the
risks of DF, and conditional logistic regression was applied to estimate the odds ratios (OR).

Results: Results showed immature mosquito indices had significant positive association with DF in the medium and
high household density areas (e.g., adjusted ORs of Breteau index were 1.04, 95% CI=[1.02, 1.06] and 1.06, CI=[1.04,
1.08] respectively), while adult mosquito index was significant to all low/med/high household densities (adjusted ORs of
Aedes aegypti index were 1.29, CI=[1.23,1.36]; 1.49, CI=[1.37,1.61] and 1.3, CI=[1.21,1.39] respectively). Meanwhile,
combination with 2-week lag rainfall, 2-month lag rainfall, 2-week lag temperature and relative humidity, resulted better
prediction of DF incidence.

Conclusion: Meteorological conditions affect DF occurrence in a nonlinear way, and a single time-point rainfall
variable is insufficient to fit it. Our study suggested that short-lag (last 2 weeks) conditions of moderate rainfall, moderate
temperature and high humidity, in combination with a long-lag heavy rainfall were related to higher probability of DF
incidence. Bl and Cl are useful predictors for DF occurrence in medium and high household density areas, but not in

the low density areas.

Keywords: Case-crossover study; Conditional logistic regression;
Household density; Vector surveillance; Aedes aegypti; Meteorology

Introduction

Dengue is the most rapidly expanding and spreading mosquito-
borne viral disease in tropical and subtropical countries [1]. This
disease is mainly transmitted by Aedes aegypti and Aedes albopictus
[2]. The incidence of dengue has increased by 30-fold in the past 50
years [1]. Approximately 2.5 billion people in more than 100 countries
are currently under the risk of dengue viral infection, with the
majority living in the Asia-Pacific region [3]. Dengue virus has four
serotypes (DENV-1-DENV-4), resulting in a wide spectrum of clinical
manifestations, including dengue fever (DF), dengue hemorrhagic
fever, and dengue shock syndrome. No vaccine or anti-viral drug is
currently available for dengue patients.

Transmission of DENV is maintained by horizontal transfer in an
A. aegypti-human cycle, although vertical transmission has also been
reported [4]. Mosquito infection begins when females imbibe viremic
blood from a human host and survive an extrinsic incubation period
of 7-14 days [5,6]. A few commonly used Stegomyia indices are as
follows: the premise or house index (HI: percentage of houses infested
with larvae and/or pupae), container index (CI: percentage of water-
holding containers infested with larvae and/or pupae), and Breteau
index (BI: number of positive containers per 100 houses) or oviposition
trap (ovitrap) data. All these indices are intended to detect the presence
or absence of A. aegypti rather than the relative abundance of adult
virus transmitting mosquitoes [7,8]. Adult A. aegypti index (AI) can be
determined by collecting mosquitoes with backpack aspirators or sweep

nets [9]. Although adult population density has been linked to the
epidemiologically important dengue incident rate, the implementation
is labor intensive and usually expensive under limited budget [10,11].

Numerous efforts have been made to investigate the relationship
between these mosquito indices and DENV transmission. However,
several researchers repeatedly reported weak association and that
DENYV transmission frequently occurs even when A. aegypti population
densities are low [8,12-16]. Different factors influence DENV
transmission, including temporaland meteorological effects on mosquito
life stages, larval mortality, heterogeneity in container productivity,
variation in susceptibility of the human population to DENV infection,
and spatial heterogeneities in vector density [8,11,15,17,18]. Failure to
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consider these factors may lower the prediction accuracy for DENV.
Furthermore, administrative inconsistency among different spatial units
may also cause geographical differences of the vector and dengue case
data, which can mask potential relationship [19]. An ideal study design
that considers the spatial and temporal aspects of these variables should
provide better understanding on the relationship between A. aegypti
population densities, DENV transmission, and disease incidence.

Kaohsiung City, a modern metropolis of 1.5 million people, has
been affected by different serotypes of DENV and becomes the focus of
DENYV activity in Taiwan over the last decades [20-23]. During 2002-
2011, Kaohsiung City had annual outbreaks of variable scales, resulting
in more than 6,000 confirmed cases [24]. Since 2005, the Department of
Health of Kaohsiung City Government has been initiating surveillance
activities by using specially trained personnel. A previous study
suggested that AI from 2005 to 2009 shows temporal correlation with
the peak of the DF activity, with 1-2-month lag period [25]. However,
the association between different vector indices and the occurrence of
dengue cases has been not completely evaluated. In the present study,
the case-crossover study design was applied to 8-year longitudinal
data focusing on Kaohsiung City in Taiwan, where the most dengue
incidences occurred. This study investigated the occurrence of dengue
patients and its association with (1) different immature mosquito
indices, (2) adult mosquito density, and (3) their interplay with
meteorological factors and household density.

Aim

This study primarily depicted the association between the
occurrence of DF and the vector surveillance factors including BI, Al,
CI, and HI; the meteorological factors including rainfall, temperature,

and relative humidity; and a few resident conditions including
household density.

Materials and Methods

Study area

The government combined Kaohsiung City with Kaohsiung
County into one unified administrative unit after December 25, 2010.
Our study area includes the former Kaohsiung City and adjacent
districts from the former Kaohsiung County, including Fongshan,
Daliao, and Linyuan (Figure 1). The area is located from 120°10'32"
to 121°01'15" east longitudes and 22°28' to 23°28' north latitudes.
Kaohsiung City is a standard subtropical region, with annual average
rainfall from 1796.7-2821.4 mm concentrated from May to September.
In addition, the annual average temperature is from 24.9 °C-25.7 °C,
with the lowest average of 11.6 °C in February and the highest average
of 31.5 °C in June.

Data sources

We used the following four databases to collect data from 2005
to 2012: (1) dengue patient surveillance, (2) vector surveillance, (3)
household registration, and (4) meteorological data. The first three
databases were obtained from the Department of Health, Kaohsiung
City Government, and the last database was archived from the
databank of Environmental Protection Administration (EPA), Taiwan.
The detailed description of each surveillance system can be referred
to the EPA [26]. Noting that DF is classified as a legal communicable
diseases in Taiwan, which means that all the cases have to be reported
to the government. The county/city government is responsible for
ascertaining each cases and reporting the record to Taiwan Center
of Disease Control, as well as all the necessary measures for DF
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Figure 1: Geographic distribution of household density in Kaohsiung.

prevention, including vector surveillance. Therefore the Department
of Health of Kaohsiung has the most accurate DF surveillance data.
Notably, considering the administrative change mentioned previously,
the former Kaohsiung City has 8-year surveillance records, whereas
the records of the districts from former Kaohsiung County started
from late 2010. All the ascertained DF cases were collected via 3 types
of surveillance: passive, active and semi-active. Most of the cases
were mainly from passive and semi-active surveillance. In passive
surveillance, dengue-like illness was reported by health care workers,
and confirmed by local health authorities, while in semi-active
surveillance, fever cases are investigated in residential areas, schools,
and work places with epidemiological linkage, and specimens are taken
once confirmed dengue cases are identified [27].

The records include the date of ascertainment, residency, age
at the time of diagnosis, and gender. Notably, “Li” is the smallest
administrative unit in Taiwan, and more than 900 Lis are present within
the study area. In this study, the address of a patient is defined as Li.
DF case is an acute febrile viral disease and fever (>38 °C), with at least
two clinical symptoms, such as intense headache, nausea, fatigue, retro-
orbital pain, myalgia, arthralgia, and skin rash [28].

Second, vector surveillance data including AL, BI, CI, and HI
were summarized as the averaged measurement of 2-week period for
each Li. However, we excluded the Aedes albopictus that activities at
outdoor, because the Kaohsiung is an urban city [2]. The frequency of
vector surveillance in Kaohsiung depends on the former DF incidence
rate over the past years in each area. By the government definition,
these Lis were considered to be of high incidence and surveyed once
every week. The middle incidence and low incidence were surveyed in
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monthly and tri-monthly basis, respectively.

To explore the effect of building style on DENV transmission, we
divided all the Lis into three groups according to its household density
levels. Notably, each doorplate of a building has its coordinates located
by satellite and is shown in the geographical information system map.
For each doorplate, we sum up the number of households with similar
coordinates and classified them as “1 household,” “2-10 households,”
and “>10 households” For each Li, if the “1 household” building
comprises more than 50% of all the buildings, then, the Li is regarded as
low household density. For others, if a Li has higher proportion of “2-10
households” buildings than “>10 households,” then, the Li is regarded
as medium household density; otherwise, the Li is classified as high
household density.

Nine EPA monitor stations scattered in Kaohsiung collected the
meteorological data. These data provide information, such as daily
accumulative rainfall, daily mean relative humidity, and daily mean
temperature. For each Li, its meteorological datum was calculated by
using inverse distance weighting interpolation. All meteorological
data were trisected into three levels (low, medium, and high),
roughly according to the 33rd and 66th percentiles. As a result, the
corresponding low, medium, and high accumulated rainfall of 8-14
days before diagnosis (i.e., 1-2 week lag) were 0-2.5 mm, 2.5-30.6
mm, and >30.6 mm, respectively. Moreover, the accumulative rainfall
of 29-56 days before diagnosis (5-8 week lag) were 0-56.2 mm, 56.2-
197 mm, and >197 mm. The 1-2 week lag average temperatures of the
tripartitions were 16 °C-27.4 °C (low), 27.4 °C-29 °C (medium), and
>29 °C (high). The 1-2 week lag average relative humidity percentages
of the tripartitions were 52%-72.9%, 72.9%-77% and >77%.

Statistics analysis

A time-stratified case-crossover design [29-30] was used in this
study. This method is used to investigate the effect of short-term
exposure to risks that continuously change, occur, and measure. By
using the self-controlled crossover design, cases act as their own control
in periods when they are unexposed. Therefore, this method accounts
for unmeasured confounding variables when these cases are constant
over time within individuals. By using the same case in different (but
insignificant) periods of time as its controls, the long-term effects,
such as gender, social economic status, body mass index, habits, and
household type, can be completely controlled.

Each patient presenting with DF for a specific condition was
considered as a case on the date of diagnosis and as three possible
controls on selected days, roughly 3, 6, and 9 weeks before the date
of DF diagnosis. We defined “Week 17 as the first 7 days before the
diagnosis, “Week 2” as the 8th-14th days before the diagnosis, and so
on. For a case, the correspondent values of vector-borne (AL BI, CI, and
HI) were based on the surveillance measurement within the 2-week
period before the diagnosis (i.e., Week 1 and 2). Similarly, the period
of measurements for the first control was set to be 3 weeks ahead of the
case and that of the second control was set to be 6 weeks ahead of the
case, and vice versa.

As for the meteorological factors, we considered the following
variables:

U 2-week lag rainfall: for the case, this factor is defined as the
average daily rainfall at the Li of the patient within the 2-week period
prior to DF diagnosis (Week 1 to Week 2); and for the controls, this
factor is the analogous average, but 3, 6, and 9 weeks earlier.

i 2-month lag rainfall: the average daily rainfall from Week 5
to Week 8 (2 months prior to DF diagnosis).

i 2-week lag temperature: the average daily temperature from
Week 1 to Week 2.

i 2-week lag relative humidity: the average daily relative
humidity from Week 1 to Week 2.

Considering that a DF case and its matched controls are from
the same patient, their long-term factors, such as living environment,
habits, and chronic health conditions, are sufficiently controlled. The
effects of vector-borne and meteorological factors were compared
between case and control days by the following model:

logit (Y) =y + B, -VI+ .- RFy, + By - RFyy + By - RFy + s RF,
+ P -Temp, + f3, - Temp, + f5; - RH, + f3, - RH,

where Y = 1 for case, and = 0 for control, and VI is one of the vector-
borne indices (AL BI, CI, or HI). RF, , Temp,, and RH, are indicator
variables, with a value 1 if the 2-week lag rainfall, temperature, and
relative humidity are between the (overall) 33rd and 66th percentiles;
otherwise, 0. Similarly, RF ,, Temp,, and RH, have a value of 1 if the
2-week lag rainfall, temperature, and relative humidity are above the
66th percentiles. Furthermore, RE, is an indicator variable, with value
1 if the 2-month lag rainfall is between the (overall) 33rd and 66th;
otherwise, 0. Similarly, RE,, has a value of 1 if the 2-month lag rainfall
is above the 66th percentiles.

Each stratum should ideally contain one case and three controls.
However, the city government may not measure the indices every
week in every Li. If any case does not have the vector measure in the
correspondent Li in neither Week 1 nor Week 2, or if none of the controls
have the measure during the correspondent period, then the stratum
is deleted. By contrast, if more than one measurement is conducted
within a week, then the average is selected. May to December is the
DF prevalent season, with DF cases of 98.7% among all cases of a year,
and surveillance data are more complete in this period. Thus, we only
considered the cases that occurred between May and December. After
the exclusion, 2453 out of the 4570 DF cases (strata) (54%) were used
in the following analysis. We then estimated the association between
vector-borne and the risk of DF using conditional logistic regression
models, which was adjusted for the meteorological factors.

Each model contains only one index and adjusted by the
meteorological factors to avoid the high co-linearity among the
mosquito indices, namely, AI, BI, CI, and HI. All analyses were
performed using the statistics software SAS 9.3. The study was approved
by the Institutional Review Board IRB-R-05-002 of Taichung Hospital,
Ministry of Health and Welfare.

Results

A total of 4570 indigenous dengue cases occurred during the period
from 2005 to 2012 in Kaohsiung City, Southern Taiwan. Nearly 96% of
the cases occurred from August 1 to December 31. Given the design of
our study, only the cases with chronically and spatially matched vector
indices data were recruited. As a result, only 2453 cases or 54% among
all cases were analyzed, with mean ages of 46.6, 45.8, and 44.5 in low,
medium, and high household density areas, respectively. The gender
distribution of DF patients was composed of 46.9%, 51.2%, and 47.3%
of males in low, medium, and high household density areas, respectively.
Chi-square test was carried out, and no statistically significant
differences were observed among all 4570 cases and the recruited 2453
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dengue cases in terms of residential area (number of Li), gender, and
age (Table 1). However, slightly more proportion (49.4%) of the studied
cases was living in the low household density area, compared with
that of all the cases (45.3%). Figure 2 shows the quartile distribution
of four different mosquito indices. From this figure, difference was not
observed among low, medium, and high household density areas.

Univariate analysis showed that BI, A, CI, and HI were significant
(p-values < 0.05), with odds ratios of 1.02, 1.33, 1.04, and 1.01,
respectively. Further stratified by the household density, BI was
significant only in medium and high household density areas, with
odds ratios of 1.03 and 1.05, respectively. Notably, both had a p-value
< 0.001. Similarly, HI was also significant (p-value < 0.05) only in
medium and high household density areas, with odds ratios of 1.03
and 1.04, respectively. Al was significant among all low, medium, and
high household density areas, with odds ratios of 1.29, 1.45, and 1.3,
respectively. CI was also significant among all low, medium, and high
household density areas, with odds ratios of 1.02, 1.03 and 1.08. All AI
and CI among all areas had a p-value <0.001 (Table 2).

Tables 3-5 show the estimates of odds ratio for each index (AL BI, CI,
or HI), with each model adjusted by functions of rainfall, humidity, and
temperature. Based on the results, AI, B, CI, and HI were significant,
with odds ratios of 1.02, 1.31, 1.04, and 1.02, respectively. In addition,
all indices had a p-value < 0.001. Further stratified by the household
density, Al was significant among all low, medium, and high household
density areas, with odds ratios of 1.29, 1.49, and 1.3, respectively.
All had a p-value < 0.0001. BI was significant in medium and high
household density areas, with odds ratios of 1.04 and 1.06, respectively.
Notably, both had a p-value < 0.0001. CI was also significant in medium
and high household density areas, with odds ratios of 1.03 and 1.1
respectively. Both had a p-value < 0.0001. HI was also significant in
medium and high household density areas, with odds ratios of 1.07 and
1.04, respectively. Both exhibited a p-value < 0.001.

The effect of rainfall on the occurrence of dengue cases was
classified into two. To consider the incubation period (3-8 days) after
infection and the life cycle of mosquito, we regarded both the average
rainfall of Week 2 before the diagnosis and that of Week 5 to Week 8 (5-8
week lag) before the diagnosis. A combination of a higher rainfall 5-8
weeks earlier and a lower rainfall 2 weeks earlier was related to higher
probability of DF incidence. Meanwhile, higher relative humidity
but lower temperature 2 weeks earlier was also related to higher DF
incidence. Among all cases, p-value < 0.001 and the odds ratio between

Dengue
subjects Subjects recruited (2453) All subjects (4570)
(Number)
Household Low | medium | high low | medium high
Density?
”“mb(‘;:)"fDF 1212 565 676 2072 1082 | 1416
number of Li (%) 165 79 96 311 109 161
46.6 45.8 44.6 44.2
age (std®) (19.5) 45.8 (19.7) 44.5 (19) (192)  (196)  (183)
gender (% of | 569:643  289:276 | 320:356 988:1084 542:540 650:766
male) (1:1.13) | (1:0.955)  (1:1.11) | (1:1.1) (1) (1:1.18)
population
density (pop/ | 7998.36 = 12420.86 17408.46 5619.68 10484.72 17457.8
km?)

alow household density: 1 household; medium household density: 2-10 households;
high household density: >10 households.

°std: standard deviation

Table 1: Demographics of the studied cases by household density.

DF and the three levels of rainfall, temperature, and humidity either
increased or decreased in a monotonic order (Tables 3-5).

Discussion

The difficulties in predicting dengue is complicated by the interplay
among the vector, climate, social, economic, household environment,
infected serotypes, and the individual susceptibility and immunity
conditions. Therefore, an inconsistent results on the association between
immature mosquito indices and DENV transmission has been repeatedly
reported. Some study had found that higher BI, HI and CI are positively
correlated with DF occurrence [31]; while others [32-35] found no
significant or even negative [36,37] association. Given that mosquito
density is temporally dynamic and spatially non-stationary [36], the
following reasons may cause the inconsistency. (1) Lack of control of
numerous environmental and demographic factors. (2) The household
density may have interaction effect with BI on DF incidence. In our study,
the case-crossover design was spatially and demographically matched, so
all the factors not changed in short period were well-controlled. To resolve
reason (2), we conducted separate analyses for different household density
areas. The results showed that BI and CI had significant positive association
with DF in medium and high household density (2 or more households
per doorplate) areas, but not in the low household density areas. All other
studies used pooled analysis which may dilute the effect and produced
non-significant association.

The inference on the association between temperature and DF
incidence is also inconsistent. A few studies [37,38] also concluded that
the temperature in a 3-month lag has negative association with the DF
occurrence; and a study in Taiwan [39] also reported negative result. In
contrast, Yu et al. [38] showed that minimum temperature in a 8-12-week
lag is positively associated with DF cases. Shang et al. [27] demonstrated
positive association in different lag periods. The inference on the association
with rainfall is also inconsistent. Yu et al. [38] and Wu et al. [39] indicated
that a 3-month lag rainfall is positively significant, whereas Chen et al. [37]
described that the 3-month lag rainfall is negatively significant. Most of the
results above reported negatively association between relative humidity
and DE.

Our study integrated both meteorological and mosquito index
data and suggested that both the short-lag (last 2 weeks, or 2-week lag)
and long-lag (week 5-8 before, or 2-month lag) meteorological factors
independently affect dengue case occurrence. Short-lag meteorological
conditions of moderate rainfall, moderate temperature, and high humidity,
in combination with a long-lag higher rainfall were related to higher
probability of DF incidence. A possible explanation of the phenomenon
is that the long-term heavier rainfall is responsible for creating a better
environment for larvae to breed, and the short-lag moderate rainfall and
temperature suitable for human’s outdoor activities as well as for mosquito
to feed. In contrast, short-lag heavy rainfall may be detrimental for
mosquito.

Limitations

Due to Privacy Protection Regulation, the exact address cannot be
accessed and the finest geographical information we can obtain is “Li,”
which usually contains tens to hundreds of households. In addition, not
all the Li’s had frequent vector surveillance inspection. Some DF cases
were forced to be excluded due to the incomplete vector surveillance
in the residential Li within a month before the incidence. A potential
selection bias was considered and missing at random was examined. No
specific cluster or pattern was found with regard to the resident areas
among the excluded cases.
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Figure 2: Box plots of various vector surveillance at low, medium, and high household density regions. Aedes aegypti index was log-transferred after adding 0.001

for avoiding infinity.

BI
Al
cl
HI
ap-value < 0.0001

°p-value < 0.001
¢ p-value < 0.05

Low household density

Odds ratio (95% CI)
1.002 (0.994, 1.01)
1.292 (1.24, 1.35)
1.02° (1.01, 1.03)
0.992 (0.977, 1.01)

Medium household density

Odds ratio (95% ClI)
1.03° (1.01, 1.04)
1450 (1.36, 1.55)
1.03° (1.01, 1.04)
1.03¢ (1.01, 1.06)

Table 2: Result of univariate conditional logistic regression on vector by household density.

BI®
low
medium
2-week lag rainfall®
high

Low household density @

Odds ratio (95% ClI)
0.998 (0.988, 1.01)
1
0.247¢ (0.198, 0.307)
0.066¢ (0.048, 0.091)

Medium household density ?

Odds ratio (95% ClI)
1.04" (1.02, 1.06)
1
0.584" (0.441, 0.773)
0.078¢ (0.052, 0.119)

High household density

Odds ratio (95% CI)
1.05° (1.03, 1.06)
1.322 (1.24, 1.39)
1.08° (1.06, 1.1)
1.04° (1.02, 1.06)

High household density?

Odds ratio (95% ClI)
1.06¢ (1.04, 1.08)
1
0.225¢ (0.165, 0.308)
0.04¢ (0.025, 0.064)
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low 1 1 1
2-month lag rainfall® medium 3.39¢ (2.75, 4.15) 5.75° (4.04, 8.17) 3.68¢ (2.7,5.02)
high 7.429 (5.69, 9.69) 10.49 (6.96, 15.4) 5.04¢ (3.45, 7.36)
low 1 1 1
2-week lag temp® medium 0.313¢ (0.253, 0.388) 0.451¢ (0.334, 0.61) 0.181¢ (0.131, 0.249)
high 0.199 (0.149, 0.242) 0.117¢ (0.079, 0.175) 0.047¢ (0.032, 0.07)
low 1 1 1
2-week lag rh' medium 2.759 (2.2, 3.44) 1.78" (1.31,2.43) 2.72¢ (2, 3.69)
high 6.82¢ (4.89, 9.5) 4.619 (3,7.07) 5.09¢ (3.32,7.8)
a low household density: 1 household; medium household density: 2-10 households; high household density: >10 households.
b Bl: Breteau index
¢ 1-2-week lag rainfall: 8-14 day lag of accumulative rainfall. Low rainfall: 0-3.5 mm, medium rainfall: 3.5-32 mm, and high rainfall: >32.
d 5-8-week lag rainfall: 29-56 day lag of accumulative rainfall. Low rainfall: 0-65 mm, medium rainfall: 65-240 mm, and high rainfall: >240 mm.
e 1-2-week lag temp: 8-14 day lag of mean temperature (temp). Low temp: 18 °C-27.6 °C, medium temp: 27.6 °C-29.1 °C, and high temp: >29.1 °C.
f 1-2-week lag rh: 8-14 day lag of mean relative humidity (rh). Low rh: 60%-73.2%, medium rh: 73.2%-77.2%, and high rh: >77.2%.
g p-value < 0.0001.
h p-value < 0.001
Table 3 : Results of multivariate conditional logistic regression on Bl and meteorological factors by household density
Low household density 2 Medium household density @ High household density *
Odds ratio (95% ClI) Odds ratio (95% ClI) Odds ratio (95% ClI)
AlP 1.29¢ (1.23, 1.36) 1.49¢ (1.37,1.61) 1.39 (1.21,1.39)
low 1 1 1
2-week lag rainfall® medium 0.2249 (0.178, 0.281) 0.636" (0.474, 0.854) 0.236° (0.173, 0.323)
high 0.06° (0.043, 0.084) 0.092¢ (0.06, 0.141) 0.046¢ (0.029, 0.073)
low 1 1 1
2-month lag rainfall® medium 3.19 (2.5, 3.85) 5.849 (4.03, 8.47) 3.899 (2.85, 5.3)
high 6.99¢ (5.31,9.2) 10.69 (7.01, 16) 4.99 (3.36, 7.15)
low 1 1 1
2-week lag temp® medium 0.304s (0.244, 0.379) 0.474s (0.345, 0.65) 0.1879 (0.136, 0.258)
high 0.179¢ (0.139, 0.23) 0.129 (0.08, 0.18) 0.052¢ (0.035, 0.076)
low 1 1 1
2-week lag rh' medium 2.549 (2.02, 3.18) 1.83" (1.32, 2.54) 3.119 (2.28, 4.25)
high 5.88¢ (4.2,8.25) 5.219 (3.36, 8.06) 5.56¢ (3.61, 8.57)
2 low household density: 1 household; medium household density: 2—-10 households; high household density: >10 households.
® Al: log Aedes aegypti index and plus positive small value.
°©1-2-week lag rainfall: 8-14 day lag of accumulative rainfall. Low rainfall: 0-3.5 mm, medium rainfall: 3.5-32 mm, and high rainfall: >32.
9 5-8-week lag rainfall: 29-56 day lag of accumulative rainfall. Low rainfall: 0-65 mm, medium rainfall: 65-240 mm, and high rainfall: >240 mm.
¢ 1-2-week lag temp: 8—14 day lag of mean temperature (temp). Low temp: 18 °C-27.6 °C, medium temp: 27.6 °C-29.1 °C, and high temp: >29.1 °C.
1-2-week lag rh: 8-14 day lag of mean relative humidity (rh). Low rh: 60%-73.2%, medium rh: 73.2%-77.2%, and high rh: >77.2%.
9 p-value < 0.0001.
" p-value < 0.001
Table 4 : Results of multivariate conditional logistic regression on Bl and meteorological factors by household density
Low household density * Medium household density ? High household density?
Odds ratio (95% ClI) Odds ratio (95% CI) Odds ratio (95% ClI)
Cle 1.01 (0.995, 1.02) 1.03" (1.01, 1.06) 1.19 (1.08, 1.12)
low 1 1 1
2-week lag rainfall® medium 0.246° (0.198, 0.307) 0.59" (0.446, 0.78) 0.202¢ (0.147, 0.279)
high 0.065¢ (0.048, 0.09) 0.079¢ (0.052,0.12) 0.0419 (0.025, 0.067)
low 1 1 1
medium 3.359 (2.71,4.13) 5.689 (3.99, 8.08) 3.159 (2.3,4.31)
2-month lag rainfall
high 7.23¢ (5.53, 9.44) 10.3¢9 (6.93, 15.4) 4.59 (3.06, 6.62)
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low 1
2-week lag temp® medium 0.316¢ (0.255, 0.391)
high 0.19¢ (0.15, 0.242)
low 1
2-week lag rhf medium 2.699 (2.16, 3.37)
high 6.67¢ (4.79, 9.28)

1 1
0.4549 (0.335,0.613) 0.1718 (0.123, 0.237)
0.1239 (0.083, 0.182) 0.048° (0.032, 0.072)
1 1
1.8 (1.3, 2.46) 2.72 (2,3.7)
4919 (3.21,7.51) 5.149 (3.33,7.94)

a low household density: 1 household; medium household density: 2-10 households; high household density: >10 households.

® Cl: Container index.

¢1-2-week lag rainfall: 8-14 day lag of accumulative rainfall. Low rainfall: 0-3.5 mm, medium rainfall: 3.5-32 mm, and high rainfall: >32.

4 5-8-week lag rainfall: 29-56 day lag of accumulative rainfall. Low rainfall: 0-65 mm, medium rainfall: 65-240 mm, and high rainfall: >240 mm.

¢ 1-2-week lag temp: 8-14 day lag of mean temperature (temp). Low temp: 18 °C-27.6 °C, medium temp: 27.6 °C-29.1 °C, and high temp: >29.1 °C.
f1-2-week lag rh: 8-14 day lag of mean relative humidity (rh). Low rh: 60%-73.2%, medium rh: 73.2%-77.2%, and high rh: >77.2%.

9 p-value < 0.0001.
" p-value < 0.001

Table 5: Results of multivariate conditional logistic regression on Cl and meteorological factors by household density.

Conclusion

Meteorological conditions affect DF occurrence through the
changes of mosquito density and biting behavior with a nonlinear
relationship, and a single time-point rainfall variable in linear model
may insufficiently fit. Our study suggested that short-lag conditions
of moderate rainfall, moderate temperature and high humidity, in
combination with a long-lag heavy rainfall were related to higher
probability of DF incidence. BI and CI are useful predictors for DF
occurrence in medium and high household density areas, but not in the
low density (one households per doorplate) areas.
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