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Abstract

The genomic profile of parous women has shown that genes which are activated only within the first five years
after pregnancy, may contribute to the increased risk of breast cancer in certain women. At the same time,
pregnancy’s protective effect is induced by a long-lasting genomic signature. This signature reveals that the
differentiation process is centered around chromatin remodeling and represents a safeguard mechanism at genomic
and post-transcriptional levels that maintains the fidelity of the transcription process, which could be the ultimate
step mediating the protection of the breast conferred by full term pregnancy.
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Introduction
Breast cancer is a heterogeneous and complex disease resulting

from the uncontrolled growth of cells that are unique and specific to
the breast. The disease affects women of all races and nationalities
[1-3]. The worldwide incidence of breast cancer has increased 30-40%
since the 1970s, reaching a more than 1,400,000 new cases and a
mortality of more than half a million by 2014 [2-6].

Epidemiological, clinical and pathological studies have uncovered
novel aspects regarding the complexity of this disease [7-9]. We know
that age at diagnosis and ethnicity are associated with a specific tumor
type and tumor behavior, which in turn are influenced by a woman’s
age at the first pregnancy [10,11]. This indicates that the global
incidence of breast cancer changes over time in relation to geography,
race and lifestyle changes, suggesting that breast cancer risk is
influenced by a multiplicity of still undefined factors. Reproductive
history is a common denominator for breast cancer risk [7,8,11].
Increased breast cancer incidence and mortality were associated with
nulliparity as early as the 1700s, as reported by Bernardino Ramazzini,
who attributed the phenomenon to the childlessness of nuns in Italian
convents [12]. MacMahon et al. [8] reported that pregnancy exerted a
protective effect in women who bore children from their early teen
years to their mid-twenties, relative to a risk of 100 for nulliparous
women. Numerous studies have confirmed these results and have
additionally reported that multiple pregnancies significantly decrease
the risk of developing breast cancer after age 50 [8], whereas full-term
pregnancy later in life increases a woman’s breast cancer risk, reaching
the same levels observed in nulliparous women when it occurs
between 30 to 34 years of age, increasing even further after 35 years
[7,8]. An understanding of the mechanisms that determine whether a
pregnancy would prevent breast cancer or increase its risk requires
taking into consideration not only the age at the first pregnancy but
also the age at the time of breast cancer diagnosis, which in turn
influences the stage and pathological characteristics of the tumors
developed [13-15].

Pregnancy
Pregnancy itself is a complex process that only succeeds when a

woman’s ovaries are fully functional and secrete estrogen and
progesterone, hormones that are essential for the maintenance of
pregnancy. The ovaries work under the control of the hypothalamic-
pituitary-gonadal (HPG) axis [16,17], which synchronizes the ovarian
secretions with those of pituitary and placental hormones for
stimulating breast development in preparation for milk production
[17,18]. Primiparous women younger than 25 years of age who have
elevated serum levels of hCG during their first trimester have 33%
decreased risk of a breast cancer diagnosis after age 50, whereas
estrogen concentrations have been positively associated with risk of
breast cancer before age 40, supporting the role of this or other
pregnancy hormones in the development of breast cancer [19-23].

When does a full term pregnancy reduce breast cancer risk?
In experiments performed in rats, pregnancy, the gold standard for

the induction of mammary gland differentiation, needs to be
completed to prevent mammary cancer. In rats it has been shown that
when their first pregnancy was interrupted 12 days after conception
and they received DMBA 21 days later [24] the tumor incidence and
number of tumors per animal in pregnancy-interrupted rats and age-
matched virgin rats were similar, whereas rats that completed their
pregnancy had a significantly reduced tumorigenic response.
Completion of the first pregnancy results in full differentiation of the
mammary gland that culminates in the secretion of milk, which
persists during the length of the lactational period [17,22]. At post-
weaning the lobular structures regress and the remaining cells exhibit
a marked reduction in proliferative rate, lengthening in the G1 phase
of the cell cycle, greater capabilities to repair DNA damaged by the
carcinogen and lower affinity for binding DMBA to DNA [22]. These
structural, functional and molecular changes persist in the mammary
gland, resulting in a significant reduction of mammary cancer
incidence that is evident in various strains of rats and mice [25], in
spite of histopathological differences in tumor type between these
species. Blakely at al. [26] have confirmed that in four genetically
distinct inbred strains of rats (Lewis, Wistar-Furth, Fischer 344, and
Copenhagen) and in mice pregnancy and lactation induce similar

Russo, J Gen Pract 2014, 2:4
DOI: 10.4172/2329-9126.1000167

Review Article Open Access

J Gen Pract
ISSN:2329-9126 JGPR, an open access journal

Volume 2 • Issue 4 • 1000167

Jo
ur

na
l of General Practice

ISSN: 2329-9126
Journal of General Practice

mailto:jose.russo@fccc.edu


structural and genomic changes in mammary glands studied by
microarray analysis. Gene analysis identified a genomic signature that
sufficed for distinguishing nulliparous from parous animals and
explain the almost total refractoriness of the parous rat mammary
gland to develop carcinomas after carcinogen administration [26,27].
These observations indicate that when the development of the
mammary gland has been completed by an early pregnancy, steroid
hormone- or hCG treatment of virgin animals the period of maximal
susceptibility to cancer (PMSC) or Stem Cells (EUN) has completed a
first cycle of differentiation under specific hormonal influences,
becoming a Stem Cell of HTN [28], which is resistant to
transformation by a carcinogen. Although more differentiated, the
HTN cells have retained the capacity to regenerate the complete
lobular system required by subsequent pregnancies. This concept has
been further demonstrated in transgenic WAP-driven Cre and Rosa
26-fl-stop-fl-LacZ mice in which parity-induced mammary epithelial
cells (PI-MEC) originated from differentiated cells during pregnancy,
survived post lactational involution and increased their percentage
with successive pregnancies [29]. PI-MEC, like the HTN cells in the
parous rat mammary gland, show capacity for self-renewal and
contribute to mammary outgrowth in transplantation studies. PI-MEC

can function as alveolar progenitors in subsequent pregnancies, and it
is thought that they would be related to differences in response to
hormonal stimulation and carcinogenic agents observed between
nulliparous and parous females [30-32].

The relevance of the findings that the first full term pregnancy
occurring during the high risk susceptibility window (HRSW) (Figure
1) but before exposure to a carcinogen prevents cancer initiation is
equivalent to the well demonstrated protective effect of an early first
full term pregnancy (FTP) in women. A first FTP initiated
approximately two weeks after carcinogen exposure, on the other
hand, results in a high incidence of mammary cancer, a phenomenon
that could explain the increased cancer risk observed in women first
parous after age 30, supporting the assumption that during that
lengthened HRSW (Figure 1) the breast has been exposed to
carcinogenic stimuli before pregnancy. These data emphasize the
importance of discriminating whether the first pregnancy would
produce protection by inducing complete differentiation of the breast
activating the same mechanisms that hormonal treatments do, or
would increase breast cancer risk as a consequence of genotoxic or
epigenetic exposures during the HRSW (Figure 1).

Figure 1: Diagrammatic representation of mammary gland development from conception to the end of reproductive life. In both rats (upper
line) and humans (lower line) the period of life that begins in uterus and persists until sexual maturity, represents a window of greater
susceptibility of the mammary gland to be damaged by exogenous carcinogenic stimuli or exposure to endocrine disruptors. The
differentiation of the mammary gland induced by pregnancy or the appropriate hormonal treatments needs to occur during the post-pubertal
period and before the mammary epithelium has suffered any damage, representing a hormone-driven window of protection that overrides the
high risk window. HRSW, high risk susceptibility window, red bar; HPW, hormonal protection window, green bar. (Adapted from: Russo and
Russo. Pregnancy-induced changes in breast cancer risk. A review. J Mammary Gland Biol Neoplasia 16:221-233, 2011).
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The human breast in pregnancy and disease
The development of the breast is a continuous process initiated by

the fourth week of intrauterine life that progresses under the influence
of maternal, placental and environmental factors until birth and by
diet and by environmental exposures after weaning. During these
periods the maturation of the hypothalamic gonadal (HPG) axis
[16,17,33] and endogenous hormone secretions play essential roles on
the development of the breast at puberty, which is driven by the
initiation of ovulation and the establishment of regular menstrual
cycles [34]. The architecture of the breast of normally cycling women
has been widely described as composed of three main lobular
structures that are classified on the basis of their degree of
development into lobules type 1 (Lob 1), lobules type 2 (Lob 2) and
lobules type 3 (Lob 3) [22,35,36]. The breasts of women who have
never conceived a child remain composed of Lob 1, with moderate
formation of Lob 2 with successive menstrual cycles; Lob 3 become
present only occasionally during the early reproductive years. After
menopause the breast further regresses, resulting in an increase in the
number of Lob 1 in response to the decline in Lob 2 and Lob 3 with
aging. It has been shown that the breast parenchyma of
postmenopausal nulliparous women contains predominantly
euchromatin nucleus (EUN) cells [28], which do not achieve the most
differentiated stage of heterochromatin nucleus (HTN) cells due to the
absence of pregnancy, therefore retaining their susceptibility to be
transformed. Therefore, a carcinogenic insult or an inappropriate
hormonal stimulus, such as hormone replacement therapy [37], would
transform the EUN cells into a cancer stem cell.

Breast development under the endocrinological influence of
pregnancy

The development of the breast from birth to puberty follows a
general pattern common for all normally cycling women, with the
formation of Lob 1, Lob 2 and Lob 3 [35,36]. The progression of
lobular development under the cyclic influence of ovarian hormones is
rapidly accelerated during the first pregnancy, which to be successful
requires the timely fertilization of an oocyte followed by its uterine
implantation. The embryo drives a process that establishes a
collaboration of the newly formed placenta with the maternal
environment [38]. The placenta alone elaborates a myriad of proteins,
glycoproteins, steroid hormones, growth factors, tumor suppressor
factors and cytokines that control the local environment of the fetus
and regulate the metabolic activities of both the mother and the fetus
[39]. In addition to estrogen and progesterone, newly secreted
hormones, such as human growth hormone (hGH), hCG, human
placental lactogen (hPL), and inhibin stimulate breast development
and differentiation [40,41]. Elevated serum levels of Metastin (KISS1)
have been detected during pregnancy [42], but the role of this
hormone in breast development has not been identified as of yet. LH,
progesterone and hCG are the main hormones driving the initial phase
of growth, followed by the secretion of the pituitary hormone prolactin
(PRL) that stimulates milk secretion and contributes to the
development of the fully differentiated Lob 4 during the last trimester
of pregnancy and lactation. After weaning, Lob 4 regresses to Lob 3,
which persists in the breast as long as women continue cycling. At
perimenopause the number of Lob 3 progressively decreases due to
their involution to Lob 2 and Lob 1 [22].

Cellular and molecular basis of the protective effect of early
pregnancy in the postmenopausal women

The morphological, physiological and genomic changes resulting
from pregnancy and hormonally-induced differentiation of the breast
and their influence on breast cancer risk have been addressed above
and in the literature [43-48]. The observations that during the post-
menopausal years the breasts of both parous and nulliparous women
contain predominately Lob 1, and the fact that nulliparous women are
at higher risk of developing breast cancer than parous women, indicate
that Lob 1 in these two groups of women either differ biologically, or
exhibit different susceptibility to carcinogenesis [46]. Novel markers
showing changes in cell types and increases in chromatin
condensation define the concept of differentiation in the adult breast
and further clarify this concept [28]. These findings confirm the
universality of the histone 3 methylation in lysines 9 and 27 during
differentiation, since a similar phenomenon has been described to
occur during embryonic stem cell (ESC) differentiation [49]. The
observed chromatin changes in parous epithelial cells are
complemented by the expression of genes related to increasing cell
adhesion, such as NRXN1, DSC3. COL27A1, PNN, COL4A6, LAMC2,
COL7A1, COL16A1, and LAMA3, and differentiation, that include
MGP KRT5 GATA3 and LAMA3 [28,48].

In contrast to the findings of other authors [50] looking at down
regulation of the expression of ER-α following recent (0 to 2 y since
last pregnancy) and distant (5 to 10 y since pregnancy) pregnancies in
premenopausal women, the genomic and IHC study in
postmenopausal breast did not reveal differences in the level of
expression of ER-α in the epithelial cells of ducts and Lob 1 between
parous and nulliparous postmenopausal women. Nevertheless,
numerous genes that are regulated downstream by ER-α were found to
be up regulated in the parous breast, supporting parity mediated
protective effect evident in younger parous women [50] but lasting
until menopause. Among the ER-α downstream regulated genes was
GATA3, which encodes a protein that belongs to the GATA family of
transcription factors that regulates T lymphocyte differentiation and
maturation. GATA3 is crucial to mammary gland morphogenesis and
differentiation of progenitor cells and a putative tumor suppressor
[51]. Induction of GATA 3 expression in GATA3-negative
undifferentiated carcinoma cells is sufficient to induce tumor
differentiation and inhibition of tumor dissemination [52]. Therefore,
the observation that genes involved in the estrogen receptor regulated
pathways are upregulated in the parous breast in spite of the lack of
transcriptomic differences in this receptor’s levels between parous and
nulliparous postmenopausal breast tissues suggests that they could be
under permanent transcriptional modification as a manifestation of a
higher degree of cell differentiation.

Studies of breast development under the influence of parity in
women and in animal models are in agreement on the pregnancy-
induced differentiation of the breast, a process that ultimately becomes
manifested as a specific genomic signature in the mammary gland
[43-45,47,50,53,54]. Although variations in gene expression among
different studies and species are expected, an increase in immune
activity, including overexpression of lipopolysaccharide binding
protein (LBP/Lbp) has been reported in the post-pregnancy breast of
premenopausal women [50] and in the mammary gland of four
different strains of rats [53]. Interestingly, this response was observed
in both recently pregnant in distant pregnant groups but not in the
postmenopausal group. These discrepancies might indicate that the up
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regulation of inflammation/immune response–related genes persists
during post-partum involution, but wanes after menopause sets in.

Importantly, there has been a reported shift in the cell population of
the postmenopausal breast as a manifestation of the reprogramming of
the organ after pregnancy [28]. These observations are in agreement
with what is observed in the rat mammary gland, which also contains
two types of luminal epithelial cells, designated dark (DC) and
intermediate (IC) cells, in addition to the myoepithelial cells [55]. The
DC and IC are equivalent to the HTN and EUN cells described in the
parous breast [28]. DCs increase after pregnancy and lactational
involution; whereas the ICs significantly outnumber the DCs in ductal
hyperplasias and ductal carcinomas [55,56]. The analysis of nuclear
ultrastructural and morphometric parameters of rodent ICs have
allowed us to differentiate the mammary progenitor stem cell from the
cancer stem cells [46,55,56]. Nuclear morphometric analysis of breast
and ovarian carcinomas has confirmed the predictive value of nuclear
grade on the progression of premalignant lesions to invasiveness
[57-59]. The findings of a significant decrease in the number of EUN
with a subsequent increase in the number of HTN cells expressing
specific biomarkers identified at the chromatin and transcriptional
levels support the value of morphometric analysis as an adjuvant to
molecular studies. The data clearly indicate [28] that there are
morphological indications of chromatin remodeling in the parous
breast, such as an increase in the number of epithelial cells with
condensed chromatin and increased reactivity with anti-H3K9me2
and H3K27me3 antibodies. Histone methylation is a major
determinant for the formation of active and inactive regions of the
genome and is crucial for the proper programming of the genome
during development [60]. In the parous breast there is up regulation of
transcription factors and chromatin remodeling genes such as CHD2
or chromodomain helicase DNA binding protein 2 and the CBX3 or
Chromobox homolog 3, whose products are required for controlling
recruitment of protein/protein or DNA/protein interactions. CBX3 is
involved in transcriptional silencing in heterochromatin-like
complexes, and recognizes and binds H3 tails methylated at lysine 9,
leading to epigenetic repression. Two other important genes related to
the polycomb group (PcG) protein that are up regulated in the parous
breast are the L3MBTL gene or l(3)mbt-like and the histone-lysine N-
methyltransferase or EZH2. Members of the PcG form multimeric
protein complexes that maintain the transcriptional repressive state of
genes over successive cell generations. EZH2 is an enzyme that acts
mainly as a gene silencer, performing this role by the addition of three
methyl groups to lysine 27 of histone 3, a modification that leads to
chromatin condensation go [49,61,62].

Recent studies indicate that RNA molecules recruit PcG complexes
to the locus of transcription or to sites located elsewhere in the
genome. An important role has been attributed to noncoding RNAs
(ncRNAs) [63]. It has been postulated [28] that the increased
chromatin condensation in the parous breast could have been initiated
by ncRNAs, a postulate supported by the observed up regulation of
several ncRNAs that included nuclear paraspeckle assembly transcript
1 (NEAT1), MALAT-1 (NEAT2) and X inactive specific transcript
(XIST) [64] all critical components of the speckles. There is a
relationship between the chromatin remodeling process and post
transcriptional control maintained by the spliceosome machinery that
is stored in nuclear speckles. Among the components of the
spliceosome machinery that are up-regulated in the parous breast are
the heterogeneous nuclear ribonucleoproteins HNRPA3, HNRPA2B1,
HNRPD and HNRPU. The functional role of these HNRPs in the
postmenopausal breast could be implicated in the regulation of mRNA

stability, other functions like mammary gland involution, acting as
negative regulators of telomere length maintenance [65] or regulating
the trafficking of mRNA molecules [66]. Other members of the
spliceosome complex are the small nuclear ribonucleoproteins
(snRNPs), which function as suppressors of tumor cell growth and
may have major implications as cancer therapeutic targets. Among
these we have found that the transcripts regulated by the genes SF3B1,
SFRS2, SFRS7, SFRS8, SFRS14, SFRS16, SNRP70, SNRPB, SNRPA1,
PRF3 and PHF5A are over expressed in the parous breast [28]. Other
members of the splicing factor compartment that are localized in the
nuclear speckles are CCNL1 and CCNL2. It has been demonstrated
that CCNL2 protein is overexpressed in the nucleus of epithelial cells
composing the Lob 1 of the parous breast [28]. CCNL1 and CCNL2
are transcriptional regulators that participate in the pre-mRNA
splicing process and the expression of critical factors leading to cell
apoptosis, possibly through the Wnt signal transduction pathway
[67,68], which we found to be down regulated in the parous breast.

Another component of the spliceosome complex that regulates
genes involved in the apoptotic process is the RNA binding motif
protein 5 (RBM5). The over expression of RBM5 retards ascites
associated tumor growth and enhances p53-mediated inhibition of cell
growth and colony formation [69,70] mechanisms that could also be
operational in the parous breast. The spliceosome plays a critical role
in differentiating mouse ESC and self-renewal, pluripotency and tissue
lineage specification of human ESC [71]. Post-transcriptional
modifications of RNA, including packaging into the nuclear speckles
of the breast epithelial cells and recognition by RNA-binding proteins
and/or microRNAs are crucial processes in differentiating breast
epithelial cells. Although it is known that these regulatory mechanisms
decrease the susceptibility of the cell to carcinogenesis, more studies
need to be conducted for identifying the specific pathways involved in
this process. Data discussed here emphasize the importance of post-
transcriptional regulatory mechanisms as a critical component
underlying the differentiation of the breast.

Basis of the dual effect of late pregnancy in the
premenopausal woman

Recently, differences in gene expression in the breast of parous
versus nulliparous healthy premenopausal women has been shown
[72] by Santucci-Pereira and colleagues. The authors used Affymetrix
Human Genome U133 Plus 2.0 microarrays, and analyzed the gene
expression profile of breast tissue from 30 nulliparous (NP) and 79
parous (P) premenopausal volunteers between the ages of 30 and 47
years who were free of breast pathology. Because of the known short-
term increase in breast cancer risk preceding the long-term protective
effect of FTP, the authors also examined gene expression differences in
P vs. NP women as a function of time since last FTP. Through
multiple regression analysis, controlling for confounders, we found
416 probesets differentially expressed (fold-change ≥ 1.2 and false
discovery rate <10%) comparing all P vs. all NP, and/or, P women
whose last FTP was less than 5 years before biopsy vs. all NP women.
Among these, 352 probesets, representing 238 genes, were up
regulated, while 64 probesets, representing 48 genes, were down
regulated in the parous compared to nulliparous breast. Of interest is
that among the up regulated genes, they observed three expression
patterns: 1) transient: genes up regulated after FTP but whose
expression levels rapidly returned to nulliparous levels. These genes
were mainly related to immune response (CCL5, CD48, IL7R); 2)
long-term changing: genes up regulated following FTP, whose
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expression levels decreased with increasing time since last FTP, but did
not return to nulliparous levels. These genes included genes related to
immune response (CD38, CXCL10) and development (DKK3,
LAMA2); and 3) long-term constant: genes that remained up regulated
in the parous compared to nulliparous breast, independent of time
since last FTP. These genes were mainly involved in developmental
processes (BHLHE22, FZD8, KRT5), cell differentiation (RASGRP1,
DSC3) and chromatin remodeling (NAP1L2). The Santucci-Pereira
study shows that a first full term pregnancy induces long-term
expression changes in genes related to the processes of development,
cell differentiation and chromatin remodeling as has also be found in
the parous postmenopausal breast [28]. Additionally, the transiently
activated genes related to immune response during the first five years
after FTP may play a role in the short-term increase of breast cancer
risk following FTP. A better understanding of the molecular effects of
parity on the breast may help the development of novel strategies for
preventing breast cancer [72].

Conclusions
The genomic profile of nulliparous and parous women in the

premenopausal and postmenopausal period has shown that there are
genes which are only activated during the first five years after
pregnancy that may contribute to the increased risk experienced by
certain women after pregnancy [28,47,48,72]. At the same time
pregnancy induces a long lasting genomic signature that starts after
pregnancy, explaining its preventive effect. The molecular mechanism
related to prevention revolves around the chromatin remodeling
process [28].
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