
Mini Review Open Access

Neurological Disorders 
Wu et al., J Neurol Disord 2013, 2:1
DOI: 10.4172/2329-6895.1000143

Volume 2 • Issue 1 • 1000143
J Neurol Disord
ISSN: 2329-6895   JND, an open access journal Microglia and Synaptic Reorganization

Preventing and Reversing “Microglia-Aging” by Nature Materials for Slow 
Brain-Aging
Zhou Wu1#*, Aiqin Zhu2#, Shizheng Wu2 and Hiroshi Nakanishi1*
1Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
2Institution of Geriatric Qinghai Provincial Hospital, Shining 810007, China 
#Zhou Wu and Aiqin Zhu contributed equally to this work

Keywords: Cognitive impairments; Microglia; Oxidative
mitochondrial DNA damage; Nature materials; Neuroinflammation

Abbreviations: AD: Alzheimer’s Diseases; IL-1β: Interleukin-1β;
Aβ: amyloid-κ; LTP: long-Term Potentiation; NF-κB: Nuclear Factor-
κB; RNSP: Ratanasampil; ROS: Reactive Oxygen Species; TNF-α: 
Tumor Necrosis Factor-α; TGF-β1: Transforming Growth Factor-β1

Introduction
By the year 2030, roughly 20% of the population will be over 65 

years of age in the world [1]. As the mean life expectancy continues 
to increase, it is an urgent issue to understand aging accelerators that 
are responsible for cognitive impairments associated with normal 
aging and Alzheimer’s disease (AD). Better understanding of aging 
accelerators will help to invent the strategies for preventing the age-
related cognitive impairments. Microglia, the resident mononuclear 
phagocyte population in the brain, are activated either chronically 
or pathologically to influence the neuronal environment. We have 
provided evidence that the excessive reactive oxygen species (ROS) 
and pro-inflammatory mediators produced by microglia cause 
neuroinflammation during aging [2]. On the other hand, hypoxia 
can drive microglia to generate ROS [3-7], resulting in NF-κB-
dependent excessive production of pro-inflammatory mediators, 
including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) 
and interleukin-6 (IL-6) [8-12]. Furthermore, microglia-mediated 
neuroinflammation is closely associated with AD pathogenesis [13], 
because overproduction of pro-inflammatory mediators by microglia 
triggers neuroinflammatory responses to promote neuronal damages 
and deposition of amyloid-β (Aβ) [14,15]. On the other hand, anti-
inflammatory agents improve cognitive functions in AD [16,17]. 
Recently, we have found that propolis, a resinous substance produced by 
honeybees as a defense against intruders, inhibits the hypoxia-induced 
production of pro-inflammatory mediators by microglia through 
inhibiting the generation of mitochondria-derived ROS and the 
subsequent activation of NF-κB signaling pathway [12]. Furthermore, 
propolis improves the cognitive functions of the people living at 

the high altitude [18]. On the other hand, Ratanasampil (RNSP), a 
traditional Tibetan medicine composing 70 nature herbal materials, 
improves the cognitive functions in mild-to-moderate AD patients 
living at high altitude through reducing the levels of pro-inflammatory 
mediators and deposition of Aβ [18]. In this review, we will highlight 
and discuss our proposed concept of “microglia-aging”, which refers 
to the concept that microglia are the most potent aging accelerators in 
the brain, in cognitive impairments associated with normal aging and 
AD. We will also provide a scope that nature materials could provide 
significant benefits in elderly people with mild-to-moderate cognitive 
impairments.

Microglia as Potent Aging Accelerators of The Brain: 
“Microglia-Aging” Concept

There is considerable variability among individuals in the extent 
of decline in the cognitive functions [19]. It is noted that the cognitive 
functions in elderly people are severely impaired during infection [20], 
surgery [21] or psychological stress [22], thus indicating that brain is 
sensitive to systemic challenges during aging [19,23-25]. Microglia, the 
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resident mononuclear phagocytes in the brain, is activated chronically 
to influence the neuronal environment during aging [2]. Perry et al. 
[26] first provided the concept of “primed microglia” [26-28]. Primed 
microglia is characterized by shortened processes and the increased 
expression of cell surface antigens similar to activated microglia, but 
they are devoid of the ability to secrete pro-inflammatory molecules. 
Systemic inflammatory signals activate primed microglia to provoke 
exaggerated neuroinflammation in comparison to normally activated 
non-primed microglia. The basal levels of pro-inflammatory mediators 
are increased during aging, leading to enhanced lipopolyssacharide 
(LPS)-induced sickness behavior in the aged animals. These 
observations suggest that microglia in the aged brain are primed and 
over-reacted to systemic challenges [29-33]. More recently, the mean 
level of IL-1β secreted by primary cultured microglia prepared from 
the aged brains is significantly higher than that from the young brains 
[12,29,34]. These observations further support our proposed concept of 
“microglia-aging” [2,35] (Figure 1).

The complex learning paradigms have revealed that the brain 
is changed structurally and functionally even in healthy middle-
aged individuals (over 50 years in human) [36]. The prefrontal white 
matter volume is significantly decreased even in the middle-age 
[37]. Furthermore, using adjuvant arthritic rats, an animal model of 
stable chronic systemic inflammatory disease, we have found that 
microglia induce an age-dependent differential responses to chronic 
systemic inflammatory challenges [38-40]. In the young adult rats, 
microglia produces anti-inflammatory mediators, including IL-10 and 
TGF-β1, during chronic systemic inflammation. In contrast, microglia 
produces excessive IL-1β, but less IL-10 and TGF-β1 in the middle-
aged rats [41-43]. These observations strongly suggest that microglia 
can be primed even in the middle-age and over-react to chronic 
systemic inflammation. Furthermore, oxidative mitochondrial DNA 
(mtDNA) damages are prominently found in microglia, suggesting 
that over production of ROS can be a cellular mechanism for priming 
of microglia after systemic inflammatory challenges [2,29]. The 
primed microglia cannot be reversed to a ground state of quiescent 
central housekeeping function, thus suggesting that “microglia-aging” 
is associated with disappearance of their abilities for maintaining 
homeostasis in microenvironment of the brain [2]. 

Acceleration of “Microglia-Aging” during Hypoxia
Brain is highly susceptible to being damaged by hypoxia because 

of its high demand for oxygen supply [44]. Function as the resident 
innate immune cells in the brain, microglia constitute the first line of 
defense against brain insults [45,46]. Hypoxia is generally accepted 
as the neuroinflammatogens in the brain, because hypoxia activates 
microglia to provoke excessive secretion of pro-inflammatory 
mediators, including IL-1β, TNF-α and IL-6 [7-9,12]. We have 
previous found that excessive production of ROS due to the increased 
oxidative mtDNA damages in microglia is responsible for exaggerated 
neuroinflammatory responses in the aged animals after treatment 
with LPS, because the increased intracellular ROS level activates NF-
κB signaling pathway which regulates the expression of several pro-
inflammatory mediators [2]. Hypoxia can drive microglia to generate 
ROS [3-6], and we have recently found that hypoxia activates NF-κB 
signaling pathway to induce exaggerated inflammatory responses by 
microglia [12] (Figure 1).

The brain is highly vulnerable to hypoxic stress due to its high 
oxygen requirement and therefore, low oxygen availability at high 
altitudes results in cognitive impairments [47]. High altitude-induced 
cognitive impairments draw a special concern because this problem 

compromises mental performance [48,49]. We have previously 
reported that higher number of elderly people living at high altitude 
suffers from declines in memory and cognitive functions in comparison 
to that of elderly people living at the ground level [50]. A similar decline 
in memory arising from hypoxic exposure has been also reported in 
experimental animals [51]. More recent observation shows that high 
altitude-exposure deteriorates mainly attention, perception, judgment 
and working memory [52].

Stroke is the most common form of hypoxia-ischemic brain injury. 
In the western world, over 70% of individuals experiencing a stroke 
is over 65 years of age. Since life expectancy continues to grow, the 
absolute number of individuals with stroke will further increase in 
the future [53]. Activation of NF-κB pathway is involved in hypoxia-
ischemic brain injury [53-55], and microglia are clarified as the major 
cell population leading to NF-κB-dependent up-regulation of pro-
inflammatory mediators, including IL-1β and TNF-α during stroke 
[56,57]. 

The chronic hypoxia contributes to the onset and progression 
of AD [12,58,59], because hypoxia activates microglia to produce 
pro-inflammatory mediators, including IL-1β TNF-α and IL-6 [7-
9,12]. Microglia-mediated neuroinflammatory responses are closely 
associated with AD pathogenesis [13], because pro-inflammatory 
responses mediated by microglia promote neuronal cell damage 
and excessive Aβ deposition [13,60]. It is also known that microglia-
mediated neuroinflammatory responses promote cognitive deficits in 
AD patients [61,62]. Taken together, hypoxia activates NF-κB signaling 
pathway to accelerate cognitive impairments through promoting 
“microglia-aging”. 

It is well known the close link between hippocampal functions and 
cognitive functions [63]. Therefore, we will discuss how “microglia-
aging” impact on cognitive functions. Hippocampal long-term 
potentiation (LTP) is widely accepted as a cellular basis of learning 
and memory [64]. The exceeded expression levels of pro-inflammatory 
mediators in the hippocampus are associated with impairment of LTP 
[65-67]. In particularly, IL-1β potently impairs the formation of the 
CA1 region [68] and the dentate gyrus of the hippocampus [69,70]. 
Recently, we have found that the hippocampal LTP is significantly 
impaired in the middle-aged, but not young adult, rats during chronic 
systemic inflammation [71].

Preventing and Reversing “Microglia-Aging” by Nature 
Materials 

There is increasing evidence that nature materials can provide 
significant benefits in dementia by their traditional usages [72]. Propolis 
has relevant therapeutic properties that have been used since ancient 
times. The chemical composition of propolis depends on the local floral 
at the site of collection [73-75]. In addition to the fact that propolis 
has anti-oxidative and anti-inflammatory effects [76-78], we recently 
provided the first evidence that propolis can significantly inhibit the 
secretion of IL-1β, TNF-α and IL-6 by microglia through inhibition of 
the activation of NF-κB signaling pathway [12]. Furthermore, propolis 
significantly inhibits oxidative mtDNA damages, which are responsible 
for the induction of excessive ROS and the subsequent activation of 
NF-κB signaling pathway. Moreover, propolis significantly inhibits 
the increased expression of 8-oxo-deoxyguanosine, a biomarker 
for oxidative DNA damages [79], which was observed mainly in the 
mitochondria of cortical microglia after hypoxia. On the other hand, 
effects of RNSP on the oxidative mtDNA damages are to be elucidated 
in future studies. With the line of our previous observations that 
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oxidative mtDNA damages, in turn, impair the respiratory chain, 
forming a vicious cycle to promote the ROS generation [2], propolis 
may prevent and reverse “microglia-aging” through its anti-oxidant 
property [76-80] (Figure 1).

People living in Qinghai-Tibet Plateau experience chronic hypoxia 
at high altitude. Current medical researches on the age-related cognitive 
impairment spay a special attention on this area, because higher 
number of the elderly population suffers from declines in memory and 
cognitive functions [81,82]. RNSP, one of the most important Tibetan 
medicines, is composed of 70 nature herbal materials [83]. RNSP is used 
to treat cerebrovascular diseases such as cerebral hemorrhage, cerebral 
infarction, epilepsy and brain concussion. Recently, clinical studies 
have revealed that RNSP has sedative and anti-convulsant effects, 
improves memory and circulation, and reduces platelet aggregation 
and antithrombotic properties [84,85]. Our previous studies have also 
showed that RNSP improves learning and memory in a mouse model 
of AD (Tg2576) [86,87] and improves cognitive functions in mild-to-
moderate AD patients living at high altitude [18]. Furthermore, our 
preliminary clinical studies for people living at high altitude show that 
the propolis-treated elderly group obtained significantly higher scores 
of cognitive tests than the non-treated elderly group [18]. Moreover, 
both RNSP and propolis reduce the mean level of pro-inflammatory 
mediators, including IL-1β, TNF-α and IL-6 in the activated 
macrophages as well as in serum of peripheral blood of human, 
indicating that they also ameliorate systemic inflammatory challenges 
[18,88]. As we have discussed above, microglia can be primed even 
in the middle-age to sensitize to systemic inflammatory challenges. 
Therefore, the pharmacological approaches using nature materials that 
prevent and reverse “microglia-aging” may become a most promising 
future research avenue for improving cognitive functions of elderly 
people (Figure 1).

Conclusion
We provide the scope that “microglia-aging” works as a brain-

aging accelerator, which is associated with cognitive impairments 
during normal aging and AD. Propolis and RNSP, nature materials, 

can improve cognitive functions of elderly people through preventing 
and reversing “microglia-aging” (Figure 1). 
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