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Cytokines play an important role in innate immune system 
recognition and rapid clearance of pathogens in mammalian at the cost 
of causing tissues injury, which also can regulate the innate immunity 
and adapt immunity [1]. Adequate cytokine activation enhances 
the ability of defending pathogens. However, excessive activation 
of the cytokine responses may destroy the homeostasis and lead to 
pathological inflammatory consequences [2].

An inflammatory response flaring out of control is known as 
“cytokine storm”. The term of “cytokine storm” was first coined by 
Ferrara JL to describe their observations in graft-versus-host disease 
(GVHD) [3], after which it began to appear more frequently in the 
scientific researches about acute lung injury induced by the influenza 
A viruses. Previous researches show that influenza A viruses were 
the most common pathogens during respiratory infection which can 
induce different cytokines profiles in lung tissues and have a significant 
influence on patients’ prognosis [4]. Different subtypes of influenza A 
viruses can raise various network of cytokines, even in the same species.

The cytokines can act as pro-inflammatory or anti-inflammatory 
in the host response, and the advent of pro-inflammatory cytokines 
usually accompanied with consistent presence of anti-inflammatory 
cytokines [5]. Once the balance between anti- and pro- inflammatory 
response was broken, it would have irreparable consequences.

The cytokines including IL-1β, IL-1Ra, IL-4, IL-5, IL-6, IL-7, 
IL-8, IL-10, IL-13, IL-17, G-CSF, GM-CSF, IFN-α, IFN-β, IFN-γ, 
TNF-α, IP-10, MCP-1, MIP-1α, MIP-1β, RANTES, keratinocyte-
derived chemokine (KC) [6-9], which were reported to aroused to 
some extent in the serum samples of patients infected with influenza 
A virus, and most of which can recruit macrophages, neutrophils and 
other polymorphonuclear cells to inflammatory sites [2,10]. Previous 
studies showed that pro-inflammatory cytokines TNF-α, IL-6, IP-10 
are excessively elevated in infections caused by highly virulent subtypes 
such as H5N1,2009 pandemic influenza A virus (H1N1) [11,12], 
which are consistent with findings in SARS [8,13], compared to the 
seasonal influenza. On 31 March 2013, an explosive human infection 
with a novel reassortant avian influenza H7N9 virus has recently been 
reported in China. Researchers also grasped the significant increased 
levels of IL-6,IP-10,TNF-α and MCP-1 in the serum gathered from 
H7N9 patients[14]. Similarly, significant increase of IL-6 and TNF-α 
was probed in the H1N1 with bacterial co-infection group [15], 
indicating that TNF-α, IL-6, IP-10 may be the key contributors in virus 
mediated severe respiratory diseases, which would lead to Acute Lung 
Injury(ALI) or Acute Respiratory Distress Syndrome (ARDS) and add 
the morbidity and mortality. On the other hand, anti-inflammatory 
cytokine appears somewhat later as the body attempts to control the 
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Abstract
Influenza virus is the common trigger for cytokines. Excessive cytokine response can lead to different extent 

pulmonary injury while defending pathogens, which depends on the pathogenicity of the virus and the strength of 
host response. Insight of the host reaction and the kinetics of cytokines network response can guide the clinical 
diagnosis and treatment, which can help reduce the mobility and the mortality.

acute systemic inflammatory response. For example, IL-10 is a cytokine 
with pleiotropic effects in immunoregulation and inflammation, which 
can downregulate the expression of Th1 cytokine and can recruit 
fibrocytes into the lung [16,17].

The expression of cytokine is associated with the condition of 
the patients. The IL-6 is lower in small-for-gestational-age (SGA) 
neonates / appropriate-for-gestational-age (AGA) neonates/children 
than in the adults [18,19]. Additionally, the pessimistic emotions were 
correlated with lower Th1 cytokine (IL-2, IFN-γ) expression during 
virus stimulation, whereas optimism contributes to greater cytokine 
responses. It appeared to be more common than those between mood 
and the Th2 cytokine response [19]. Furthermore, compared to non-
asthmatic patients, asthmatic patients also show higher level of IL-5, 
histamine, protease during virus infection, which are allergic [20,21].

The amplified situation of cytokine expression was proved by 
multiple researches, but the mechanisms remain unclear. It is known 
that influenza virus may escape the cytokines’ antiviral effects and 
consistent replicate [22], the increased viral load may mount host 
cytokine response, such as IL-1Ra, IL-6, MCP-1, TNF-α and IP-10 [6, 
23], and cause hypercytokinemia. Moreover, as the cytokines secreted, 
it appears to have secondary stimulation. For example, when treated 
with TNF-α, differentiated astrocytes can express IL-6 as well as other 
cytokine; it is not the case in turn [24]. IFN-γ can stimulate the delivery 
of IP-10 and MIG, and they can modulate the Th1 cellular immune 
response in influenza infection [25,26]. Likewise, IFN-α, IFN-γ, IL-1β 
can affect the secretion of IL-6 and IL-12 to various degrees as well 
[27-29].

There are many complete researches about the relationship between 
cytokines, and some cytokine regulators are already licensed for human 
use, such as IL-2 and interferon (IFNs) [30]. Nevertheless, it is limited 
in guidance on the control of the cytokine storm, and the threaten 
caused by influenza A virus still exist. Base on that, scientists turn to 
study the effect of different cell types on initiation and amplification 
of the cytokine storm that follow virulent influenza infection. It shows 
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that diversified types of cells have capacities for secreting cytokines, 
including macrophages, neutrophils, though fibrocytes and endothelial 
cells [5]. Previous studies show that the sphingosine-1-phosphate (S1P) 
signaling system acted as immune response modulator is related to 
cytokine amplification during influenza virus infection [31]. Infected 
mice treated with the AAL-R, a promiscuous S1P receptor agonist  [32], 
or the S1P1-receptor specific agonist, CYM-5442 show suppression 
of early inflammatory cells recruitment through dampen cytokine 
production by lung endothelial cells [33]. The achievement provides 
insight into immune cell trafficking and immune responses points to a 
new shield for cytokine storm.

In summary, monitoring the change of those key cytokines as 
biomarkers, such as IL-6, TNF-α, while improving the efficiency of 
virus detection goes a long way towards evaluating the disease severity 
of flu patients and guiding physicians to institute immunomodulatory 
treatment accompanied by antiviral treatment. In the process of 
research on the network and the kinetics of cytokines responses, 
comprehending the critical part of host reaction should be attached to 
more importance.
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