Clinical Microbiology: Open Access

ISSN: 2327-5073

Clinical Microbiology: Open Access
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business

Anti-Helicobacter pylori Activity of Abelmoschus esculentus L. Moench (okra): An in vitro Study

Taiye A Olorunnipa1Christopher C Igbokwe1Temitope O Lawal1Bolanle A Adeniyi1*Gail B. Mahady2
1Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria
Corresponding Author : Bola A Adeniyi, Ph.D
Department of Pharmaceutical Microbiology
Faculty of Pharmacy
University of Ibadan, Ibadan, Nigeria
Received September 06, 2013; Accepted October 17, 2013; Published October 24, 2013
Citation: Olorunnipa TA, Igbokwe CC, Lawal TO, Adeniyi BA, Mahady GB (2013) Anti-Helicobacter pylori activity of Abelmoschus esculentus L. Moench (okra): An in vitro study. Clin Microbial 2:132. doi:10.4172/2327-5073.1000132
Copyright: © 2013 Olorunnipa TA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
Visit for more related articles at Clinical Microbiology: Open Access


The anti-Helicobacter pylori activity of the methanol and hexane extracts of Abelmoschus esculentus L. Moench (okra) dried fruits were evaluated on forty-one clinical isolates and a standard ATCC 43504 strain by the use of agar well diffusion technique. The methanol extract of A. esculentus showed A. esculentus L. Moench (okra) dried fruit had inhibitory effects against Helicobacter strains; with diameters zone of inhibition between 13 and 28 mm on 32 out of the 42 isolates tested. No noticeable zone of inhibition was observed from the hexane extract of the tested plant on all the H. pylori strains tested. The bioactive methanol extract of A. esculentus demonstrated A. esculentus L. Moench (okra) dried fruit had Minimum Inhibitory Concentration (MIC) values of 70 to 85 mg mL-1 on selected susceptible strains except H. pylori AT CC 43504 which had MIC value of 250 mg mL-1. The time-kill study of the methanol extract of A. esculentus on H. pylori BAA009, H. pylori BAA026 and H. pylori ATCC 43504, revealed a decline in the surviving population of the organisms after 8 h of exposure to the methanol extracts of A. esculentus L. Moench dried fruit at doses equivalent to MIC2 × MIC and 4 × MIC, and a total kill of the population at 24 h. Therefore, alternative antimicrobial agents may be isolated from further bioassay-guided fractionation of edibles such as A. esculentus L. Moench for the treatment of H. pylori infections, especially as they are readily available.

Anti-Helicobacter pylori; Abelmoschus esculentus; Fruit; Kill kinetics; Methanol; Hexane
Helicobacter pylori is a Gram-negative spiral-shaped, fastidious, microaerophilic bacillus [1] hum an pathogen currently being investigated worldwide due to its prevalence in almost 50% of the world’s population and has been implicated as a major etiologic agent of chronic gastritis, peptic ulcer disease (PUD), gastric adenocarcinoma, and lymphoma [2,3]. Since its first acceptance by the international guidelines in 1996, the standard first-line treatment options for H. pylori eradication involves triple therapies which utilize an antisecretory agent (usually a Proton-Pump Inhibitor (PPI)) and two antim icrobial agents most of the ten selected from amoxicillin, clarithromycin, and metronidazole [3]. In the last decade however, a progressive decline in cure rates below the acceptable level of 80% has been reported [4] with increasing antimicrobial resistance of H. pylori in m any countries leading to difficulty in the successful treatment of H. pylori infections [5,6]. Estimates suggest that ~80% of people living in dev eloping countries depend primarily on traditional medicine [7] with the use of herbs from plants as major source for treating diseases [8]. One of such common plant readily available in dev eloping countries like Nigeria is Abelmoschus esculentus L. Moench. Also known as lady’s finger or okra, A. esculentus is edible and well known for its nutritional value and healing properties such as anticancer, reduced heart attack, lower blood cholesterol, relieve intestinal disorder, relieve inflammation of the colon, relieve diverticulitis, relieve stomach ulcer, neutralize acid, lubricate large intestine, treatment of lung inflammation, treatm ent of irritable bowel, keep joints limber, as well as the treatm ent of sore throats, burns, reducing poisonings and psoriasis [9-12]. A. esculentus has also been shown to possess antibacterial properties against infectious disease causing bacterial pathogens such as Bacillus subtilis, Streptococcus pyogens, Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Proteus mirabillis and Pseudomonas aeruginosa [13], Rhodococcus opacus, Mycobacterium sp. and M. aurum, Staphylococcus aureus, Escherichia coli, and Xanthobacter py2 [14], inhibit the adhesion of Helicobacter pylori to human gastric mucosa [15] and inhibits the adhesion of Campylobacter jejuni to mucosa isolated from poultry in vitro but not in vivo [16]. In Nigeria and m ost dev eloping countries, H. pylori infection is a public-health issue [17]. The aim of this study is to evaluate the in vitro anti-Helicobacter pylori activity of A. esculentus: specifically to determine its zone of inhibition, Minimum Inhibitory Concentration (MIC) and kill rate with time on the organism.
Materials and Methods
Plant collection, extraction, and preparation of extracts
Dried fruits of A. esculentus L. Moench (okra) were purchased from Bodija Market, Ibadan, Oyo State, Nigeria; between the months of December 2010 and March 2011; and then identified and authenticated at the Department of Botany and Microbiology, University of Ibadan, and Forest Research Institute of Nigeria (FRIN), Ibadan, Oyo State. Voucher specimen was deposited at FRIN with herbarium number FHI 109558. The fruits were dusted and air dried at room temperature for 4 to 5 weeks and then grounded to coarse powder using a dry electric mill (Moulinex). The pulverized plant material (8.6 kg) was extracted (in smaller portions) by subjecting it to exhaustive Soxhlet extraction with n-hexane and methanol in succession. Extracts were collected, dried under reduced pressure, weighed, and stored at −20°C for 24 h before use. Stock solutions of lyophilized extracts were reconstituted in 20% DMSO with final concentrations of 100 to 400 mg/ml prepared for the initial screening. Lower concentrations in the range 20 to 300 mg/ml were also prepared to determine the Minimum Inhibitory Concentrations (MICs) of the bioactive crude extracts.
Antimicrobial agents
The chemotherapeutic agents used in the test as positive control were Gentamicin 100 μg/mL (Nichol as Laboratories Limited, England), Ofloxac in 100 μg/mL and Metronidazole 100 μg/mL, while the negative control was 20% DMSO.
Phytochemical screening
Phytochemical screening was carried out t o detect the pres enc e of secondary metabolites such as anthraquinones, tannins, saponins, alkaloids, and carbenolides using methods described by Harborne [18].
Strains of Helicobacter pylori and culture methods
Fort y-one clinical isolates and a standard strain ATCC 43504 were used for this investigation. All the clinic al strains were isolated, characterized and identified at The Department of Pharmaceutical Microbiology, University of Ibadan, Ibadan, Nigeria; while the ATCC strain was from College of Pharmacy, University of Illinois, Chicago, USA.
Susceptibility testing
Susceptibility was determined using the agar well diffusion technique. A 0.1 ml aliquot of logarithmic phase broth culture of each bacterium (optical density equivalent to 107-108 cf μ/ml) was used to seed sterile molt en Mueller-Hint on agar (O XOID) medium with 5% sterile horse blood maintained at 45°C. The seeded plates were allowed t o dry in the incubator at 37°C for 20 min. A standard cork borer (8 mm diameter) was used to cut uniform wells on the surface of the agar, into which was added increasing concentrations of the test extract dissolved in 20% DMSO. A pre-incubation diffusion of the extracts into the seeded medium was allowed for 1 h. Plates were incubated at 37°C in an automatic CO2-O2 incubator under microaerophilic conditions (85% N2, 10% CO2 and 5% O2) for 2-3 days after which diameters of zones of inhibition (mm) were measured. Since each of the extracts was reconstituted in 20% DMSO, these diluents were included in each plate as a solvent control besides the chemotherapeutic agents included as positive controls. This method has been adopted from previous published procedures [19].
Determination of minimum inhibitory concentrations
Minimum Inhibitory Concentrations (MICs) were performed by a modification of standard agar dilution method procedures as previously described [20]. Extracts were tested at various concentrations. The positive control antibiotic included was of loxacin. The MICs were determined after 3 to 5 days of incubation at 37°C under microaerophilic conditions. The MIC was regarded as the lowest concentration that showed no visible growth from a duplicate experiment.
Time-kill Assay
Determination of bactericidal activity of the methanol extract of A. esculentus
The viable counting technique was employed for this assay as previously described [21]. An overnight broth culture in 4.5 ml of Trypticsoy broth inoculated in a static growth condition of each organism was made. Two of the H. pylori strains coded BAA009 and H. pylori BAA026 and a standard strain ATCC 43504 were used for this experiment. A 0.5 ml of each culture was subculture into a warm (37°C) 4.5 ml Tryptic Soy broth and incubated for 90 min using a Gallenkamp orbit al incubator to give a logarithmic phase culture. A 0.1 ml of the logarithmic phase culture was then inoculated into a warm 4.9 ml of Tryptic Soy broth containing the test extract to give 1 in 50 dilution of the culture (equivalent to approximately 1 × 107 colony forming units) and the required concentration of the extract. A loopful of the test sample (extract-culture mixture) was withdrawn immediately, diluted out in Tryptic Soy broth and 0.2 ml of 1:1000 dilution plated on an oven dried Mueller-Hint on agar to give control time 0 min count. Samples were taken at 30 min, 1, 2, 4, 6 and 24 h. The procedure was carried out in duplicate. Plates were incubated at 37°C for 24 h before counting the colonies. Control plates for negative and positive controls were also incubated. The number of colony forming unit were counted after the period of incubation. The numbers of surviving bacterial c ells per ml were calculated by taking into consideration the dilution factor and the volume of the inoculum. All the procedure was repeated for 2 × MIC and 4 × MIC. A graph of percentage viable count against time in hour (h) was plotted to show the rate of k ill of the test organisms after duplicate experiments.
Bactericidal effects against Helicobacter strains; with diameters zone of inhibition of the ex tract between 11 and 28 mm, in 31 out of the 42 isolates tested. No noticeable zone of inhibition was observed by the hexane extract of the tested plant on all the Helicobacter strains tested.
The Phytochemical screening of the m ethanol and hexane extracts of A. esulentus (data shown in Table 1) showed the presence of alkaloids, saponins, cardenolides, anthraquinones and tannis. These various plant metabolites have earlier been reported to possess medicinal, antimicrobial and physiological activities [22,23]. The presence of these secondary metabolites could be the reason for the observed antimicrobial activities of this plant [24]. Many phytomedicines exert their effects through the additive or synergistic action of several com pounds acting at a single or multiple target sites associated with physiological process [25]. It is noteworthy to state that a large concentration of alkaloids were observed in this study, with all the fractions obtained from the m ethanol extract possessing different degrees of antimicrobial activities on H. pylori strains.
The MICs of methanol extract of A. esulentus on the entire test H. pylori strains in Table 1 were observed to be generally high. This is similar to previous works on crude extracts of plants by other researchers, who reported high MIC values against their test microorganisms [26-28]. However, the MIC values confirmed the existence of inhibitory effects of A. esulentus dried fruit with MIC values of 70 to 85 m g mL-1 for both extracts on selected susceptible strains except H. pylori ATCC 43504 which had MIC-1
The Phytochemical screening of the methanol and hexane value of 250 mm ethanol extract of A. esulentus is shown in Table 1. Anti- Helicobacter pylori activity was demonstrated by the crude m ethanol extract of A. esculentus at concentration ≤ 400 mg/ml as shown in Table 2. No activity was demonstrated by the hexane extract against H. pylori strains. The MIC of the crude m ethanol extract of A. esculentus against H. pylori strains with susceptibility of 14 mm and above ranged between 70 to 85 mg/ml. The time-kill study of the m ethanol extract of the plant on H. pylori BAA009, H. pylori BAA026 and H. pylori ATCC 43504 are shown in Figures 1-3.
In this study, the anti-H. pylori activity of the m ethanol and hexane extracts of A. esulentus dried fruits was evaluated. The antimicrobial screening results of the anti-Helicobacter activity of the extracts by the use of agar well diffusion technique were presented in Table 2. The MICs of 13 out of the 42 isolates of H. pylori using m ethanol extracts of A. esulentus was determined, while two of the H. pylori strains coded BAA009 and H. pylori BAA026 and a standard strain ATCC 43504 were used for bactericidal (kill) studies. The studies showed that the m ethanol extracts of A. esulentus dried fruit had esculentus. Chaichanawongsaroj et al. [29] has reported similar MIC (>512 μg/mL) result of anti-H. pylori activity of while investigating the anti-H. pylori and anti-internalization activities of thirteen Thai plant extracts used for gastric ailments in traditional medicine. The time-kill study of the m ethanol extracts on H. pylori BAA009, H. pylori BAA026 and H. pylori ATCC 43504 as shown in Figures 1-3, revealed a dose dependent decline in population after 8 h of exposure to the m ethanol extracts at doses equivalent to MIC, 2 × MIC and 4 × MIC, followed by a total kill of the population at 24 h. A higher kill rate by the extract at higher concentration (4 × MIC) was generally observed, suggesting resistance of the H. pylori strains to lower concentrations. The bactericidal activity was observed to be dependent on time and dose/concentration as the percentage reduction in viable count of surviving population increased with increase in exposure time and concentration of the extracts. This is similar to previous kinetics study [30].
H. pylori infection is associated with chronic gastritis, gastric and duodenal ulcers and gastric cancer in humans [31]. Several treatment regimens have been dev eloped and proved to eradicate H. pylori with a cure rate of up to 90% [32]. However, these regimens may have side effects, poor compliance, and antibiotic resistance [33]. Therefore, alternative antimicrobial agents such as A. esculentus L. Moench with fewer side effects are necessary for the treatment of H. pylori infection in dev eloping countries, especially as they are edible and readily available.
The anti-H. pylori activities exhibited by A. esculentus L. Moench suggests its local use in the treatment of gastro-intestinal diseases associated with the H. pylori species. Our result show the MIC value does not show potent activity to focus on isolation. However, isolation for phytochemical characterization of active components can be done. Moreover, since this plant is edible it can be safely taken in copious amounts regularly. Thus, it is a potential health food source.


Tables at a glance

image   image
Table 1   Table 2


Figures at a glance

image   image   image
Figure 1   Figure 2   Figure 3
Select your language of interest to view the total content in your interested language
Post your comment
Share This Article
Relevant Topics
Disc Advanced Therapies
Disc Anthrax
Disc Antifungals
Disc Antimicrobial Activity
Disc Antimicrobial Agents
Disc Antimicrobial Suceptibility
Disc Antimicrobials
Disc Antiretroviral Therapy
Disc Antiretrovirals
Disc Antivirals
Disc Applied Bacteriology
Disc Applied Microbiology
Disc Applied Mycology
Disc Applied Virology
Disc Aquatic microbiology
Disc Bacteraemia
Disc Bacterial Ecology
Disc Bacterial Genomics
Disc Bacterial Infections
Disc Bacterial Toxin
Disc Bacteriology
Disc Bacteriophages
Disc Chicken Pox
Disc Clinical Microbiologist
Disc Clinical Microbiology Case Reports
Disc Clinical Microbiology Guidelines
Disc Clinical Microbiology Research
Disc Clinical Microbiology Reviews
Disc Clinical Microbiology and Infection
Disc Clinical Practice Guidelines
Disc Clinical Trials
Disc Clinical Trials Data Management
Disc Clinical Trials Data Management Softwares
Disc Clinical Trials Europe
Disc Clinical Trials Japan
Disc Clinical Trials Management
Disc Clinical Trials USFDA
Disc Clinical Virology
Disc Colon Infection
Disc Combination Therapy
Disc Conjunctivitis
Disc Cross Infection Control
Disc Data Auditing Methodologies
Disc Diabetes Protocol
Disc Diabetic Trials
Disc Diagnostic Microbiology
Disc Drug Clinical Trials
Disc Emerging Viral Diseases
Disc Environmental Microbiology
Disc Escherichia coli
Disc H1N1
Disc HIV
Disc HIV Clinical Trials
Disc HIV and AIDS Research
Disc Hepatitis C
Disc Herpes Virus
Disc Host-Pathogen Interactions
Disc Human Papilloma Virus
Disc Infection
Disc Infection in Blood
Disc Infections Prevention
Disc Infectious Diseases in Children
Disc Influenza
Disc Interferons (IFNs)
Disc Intestinal Microbiology
Disc Intestinal Parasites
Disc Leprosy
Disc Listeriosis
Disc Lyme Disease
Disc Manual of Clinical Microbiology
Disc Medical Microbiology
Disc Microbes
Disc Microbial Enzyme
Disc Microbial Genetics
Disc Microbial Physiology
Disc Molecular Microbiology
Disc Molecular Pathogenesis
Disc New Infections
Disc New Microbes
Disc Nosocomial Infection
Disc Opportunistic Infections
Disc Paid Research Studies Market Analysis
Disc Papillomavirus
Disc Parasitic Infection
Disc Parasitic Worms
Disc Parasitology
Disc Pilot Studies
Disc Preclinical Trails
Disc Predictive Microbiology
Disc Protease Inhibitors
Disc Protocol
Disc Psychiatric Studies
Disc Randomized Controlled Trials
Disc Rehabilitation Protocols
Disc Respiratory Tract Infections
Disc Retrovirology
Disc Rickettsioses
Disc STD
Disc Salmonella
Disc Salmonellosis
Disc Soil Microbiology
Disc Staphylococcal Infections
Disc T Cell Lymphomatic Virus
Disc Treatment for Infectious Diseases
Disc Viral Encephalitis
Disc Viral Immunity
Disc Viral Vaccine
Disc Viral Vectors
Disc Yeast Infection
Disc Zoonotic Bacterial Diseases
Recommended Journals
Disc Antivirals & Antiretrovirals Journal
Disc Infectious Diseases & Therapy Journal
Disc Applied Microbiology Journal
Disc Bacteriology & Parasitology Journal
Disc Clinical Trials Journal
  View More»
Recommended Conferences
Disc Microbial Physiology and Genomics Conference  
Oct 20-22, 2016 Rome, Italy
Disc 6th Clinical Microbiology Conference
Oct 24-26, 2016 Rome, Italy
Disc 7th World Congress and Expo on Applied Microbiology
November 10-12, 2016 Istanbul, Turkey
Article Tools
Disc Export citation
Disc Share/Blog this article
Article usage
  Total views: 12273
  [From(publication date):
December-2013 - Oct 22, 2016]
  Breakdown by view type
  HTML page views : 8475
  PDF downloads :3798

Post your comment

captcha    Reload  Can't read the image? click here to refresh

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
OMICS International Conferences 2016-17
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version