ISSN: 2329-891X
Journal of Tropical Diseases & Public Health
Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business
Research Article
Open Access

Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae after Biofield Treatment

Mahendra Kumar Trivedi1, Alice Branton1, Dahryn Trivedi1, Harish Shettigar1, Mayank Gangwar2 and Snehasis Jana2*
1Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA
2Trivedi Science Research Laboratory Pvt. Ltd., Hall-A, Chinar Mega Mall, Chinar Fortune City, Hoshangabad Rd., Bhopal-462026, Madhya Pradesh, India
Corresponding Author : Dr. Snehasis Jana
Trivedi Science Research Laboratory Pvt. Ltd.
Hall-A, Chinar Mega Mall
Chinar Fortune City, Hoshangabad Rd.
Bhopal- 462026, Madhya Pradesh, India
Tel: +91-755-6660006
Received August 01, 2015; Accepted August 13, 2015; Published August 20, 2015
Citation: Trivedi MK, Branton A, Trivedi D, Shettigar H, Gangwar M, et al. (2015) Antibiogram Typing and Biochemical Characterization of Klebsiella Pneumonia after Biofield Treatment. J Trop Dis 3:173. doi:10.4173/2329891X.1000173
Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at Pubmed, Scholar Google
Visit for more related articles at Journal of Tropical Diseases & Public Health


Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat in patients in health care settings. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on four MDR clinical lab isolates (LS) of K. pneumoniae (LS 2, LS 6, LS 7, and LS 14). Samples were divided into two groups i.e. control and biofield treated. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment as compared with control group. Antimicrobial sensitivity assay showed that there was 46.42% alteration in sensitivity of tested antimicrobials in treated group of MDR K. pneumonia isolates. MIC results showed an alteration in 30% of tested antimicrobials out of thirty after biofield treatment in clinical isolates of K. pneumoniae. An increase in antimicrobial sensitivity and decrease in MIC value was reported (in LS 6) in case of piperacillin/tazobactam and piperacillin. Biochemical study showed a 15.15% change in biochemical reactions as compared to control. A significant change in biotype numbers were reported in all four clinical isolates of MDR K. pneumoniae after biofield treatment as compared to control group. On the basis of changed biotype number after biofield treatment, new organism was identified as Enterobacter aerogenes in LS 2 and LS 14. These results suggest that biofield treatment has a significant effect on altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug-resistant isolates of K. pneumoniae.

Klebsiella pneumoniae; Biofield Treatment; Multidrug- Resistant; Antimicrobial susceptibility; Biochemical Reaction; Biotyping
Klebsiella pneumoniae (K. pneumoniae) is Gram-negative, rodshaped, facultative anaerobic, and nonmotile bacterium, belongs to family Enterobacteriaceae. It is a common human pathogen associated with nosocomial and community infections [1]. K. pneumoniae isolates causes several infections such as pneumonia, septicemia, wound infections, and urinary tract infections, which ultimately lead to morbidity and mortality especially in immunocompromised patients, and patients of intensive care units, pediatrics and surgical wards [2]. K. pneumoniae acquire resistance against existing antimicrobials by multiple mechanism results in increased multidrug-resistant (MDR) of K. pneumoniae that leads to serious problem in hospital settings and health concern. Emergence of resistance occurs not only in MDR isolates but also exist in pan-drug resistant (PDR) isolates of K. pneumoniae. PDR refers to the resistant strains those are specifically resistant to 7 antimicrobial agents such as cefepime, imipenem, meropenem, ceftazidime, ciprofloxacin, piperacillin-tazobactam, and levofloxacin [3]. Apart from this, the extended-spectrum β-lactamase (ESBL) producing Klebsiella from a patient has been identified which causes serious threat worldwide [4,5]. Continuous use of antibiotics leads to resistance in microorganisms via. different pathways mediated by plasmids, transposons, and gene cassettes in integrons [6,7]. Carbapenem is usually preferred for the infection caused by MDR isolates of K. pneumoniae but recently carbapenemresistant K. pneumoniae was also reported [8]. Due to dramatically increase in drug resistant in K. pneumoniae, very few treatment options are available. Alternative approaches are available but altering the sensitivity pattern of antimicrobials using biofield is not available against MDR microorganism, apart from existing allopathic system of medicine. Biofield treatment may be an alternative approach to alter the susceptibility pattern of K. pneumoniae. Complementary and alternative medicine (CAM) therapies are commonly practiced in healthcare sector and about 36% of Americans regularly uses some form of CAM [9]. CAM include numerous energy therapies, biofield therapy, is one of the energy medicine widely used worldwide to improve the human health. The energy exists in various forms that can be produced from different sources such as potential, electrical, kinetic, magnetic, and nuclear energy. However, electromagnetic field defines as when electrical signals fluctuate will generate magnetic field with respect to time. The cumulative effect of bio-magnetic and electric field that surrounds the human body is defined as biofield. The biofield energy can be monitored by using electromyography (EMG), electrocardiography (ECG) and electroencephalogram (EEG) [10]. According to Lucchetti et al. biofield energy has shown significant effect on growth of bacterial cultures [11]. Mr. Trivedi has the ability to harness the energy from environment or universe and can transmit into any living or nonliving object(s) around the Universe. The objects always receive the energy and responding into useful way via biofield energy and the process is known as biofield treatment. Mr. Trivedi’s unique biofield treatment is also known as The Trivedi Effect®. Mr. Trivedi’s biofield treatment was extensively studied in different fields such as in material science [12,13], agricultural science [14-16], and in biotechnology [17]. Further,
the biofield treatment has considerably altered the susceptibility of antimicrobials and biotype of microbes [18-20]. By considering the above mentioned facts and literature reports on biofield treatment, the present work was undertaken to evaluate the impact of biofield treatment on antimicrobials susceptibility, biochemical reactions pattern, and biotype of MDR isolates of K. pneumoniae.
Materials and Methods
Experimental design and bacterial isolates
MDR clinical lab isolates (i.e. LS 2, LS 6, LS 7 and LS 14) of K. pneumoniae were obtained from stored stock cultures in Microbiology Lab, Hinduja Hospital, Mumbai. Each MDR strains was divided into two groups i.e. control and treatment. The acceptability of the identification media and antimicrobial agents were checked prior to the study on microorganisms. The antimicrobial susceptibility, biochemical reactions, and biotype number were evaluated on MicroScan Walk- Away® (Dade Behring Inc., West Sacramento, CA) using Negative Breakpoint Combo 30 (NBPC 30) panel. The NBPC 30 panel was stored at 2 to -25ºC. All antimicrobials and biochemicals were procured from Sigma Aldrich, USA.
Biofield treatment strategy
Treatment groups of each strain, in sealed pack were handed over to Mr. Trivedi for biofield treatment under laboratory conditions. Mr. Trivedi provided the treatment through his energy transmission process to the treated groups without touching the samples. The biofield treated samples were returned in the similar sealed condition and analyzed on day 10 using the standard protocols. The study was conducted on automated MicroScan Walk-Away® system (Dade Behring Inc., USA).
Evaluation of antimicrobial susceptibility assay
Antimicrobial susceptibility patterns of MDR lab isolates of K. pneumoniae were studied using MicroScan Walk-Away® using Negative Break Point Combo (NBPC 30) panel as per manufacturer’s instructions. The antimicrobial susceptibility pattern (S: Susceptible, I: Intermediate, IB: Inducible β-lactamase; EBL: Suspected extended-spectrum β -lactamases, and R: Resistant) and MIC values were determined by observing the lowest antimicrobial concentration showing growth inhibition [21]. The antimicrobials used in the susceptibility assay viz. amikacin, amoxicillin/k-clavulanate, ampicillin/sulbactam, ampicillin, aztreonam, cefazolin, cefepime, cefotaxime, cefotetan, cefoxitin, ceftazidime, ceftriaxone, cefuroxime, cephalothin, chloramphenicol, ciprofloxacin, gatifloxacin, gentamicin, imipenem, levofloxacin, meropenem, moxifloxacin, norfloxacin, nitrofurantoin piperacillin, piperacillin/tazobactam, tetracycline, ticarcillin/K-clavulanate, tobramycin, and trimethoprim/sulfamethoxazole
Biochemical study
Biochemical studies of each MDR isolates of K. pneumoniae were determined by MicroScan Walk-Away® using NBPC 30 panel system in both control and treated groups. Biochemicals used in the study are acetamide, adonitol, arabinose, arginine, cetrimide, cephalothin, citrate, colistin, esculin hydrolysis, nitrofurantoin, glucose, hydrogen sulfide, indole, inositol, kanamycin, lysine, malonate, melibiose, nitrate, oxidation-fermentation, galactosidase, ornithine, oxidase, penicillin, raffinose, rhamnose, sorbitol, sucrose, tartarate, tryptophan deaminase, tobramycin, urea, and Voges-Proskauer [21].
Identification by biotype number
The biotype number of each MDR isolates of K. pneumoniae in control and treated sample were determined followed by identification of microorganism by MicroScan Walk-Away® processed panel data report with the help of biochemical reaction data [21].
Results and Discussion
Antimicrobial susceptibility study
Results of antimicrobial sensitivity pattern and MIC values of control and treated MDR isolates of K. pneumoniae are summarized in Tables 1 and 2, respectively. All these changes were observed on 10 days after biofield treatment as compared to control group. Overall, 46.42% of tested antimicrobials out of twenty eight, showed alteration in antimicrobial sensitivity pattern against biofield treated MDR isolates of K. pneumoniae. All four MDR isolates, showed variations in antimicrobial sensitivity assay viz. 32.14% in LS 2, 25% in LS 6, 17.85% in LS 7, and 28.57% in LS 14 against the tested antimicrobials (Figure 1). Extended spectrum beta-lactamases (ESBLs) are rapidly evolved group of beta-lactamases enzyme, which confer resistance to most beta-lactam antibiotics, including penicillins, cephalosporins, monobactam and aztreonam. Apart from beta-lactam antibiotics, ESBLs are also resistant to other classes of non-penicillin antibiotics [22]. Beta-lactamases are enzymes that inactivates the antibiotic and are present in almost all Gram-negative bacilli. However, some pathogenic species, such as E. coli and Klebsiella spp., are not able to induce the production of β-lactamase which varies from low to high level. In some species, exposure to β-lactams will induced the production level of β-lactamase, commonly results in resistance to these agents. These inducible β-lactamases are frequently found in Enterobacter spp. [23]. Experimental results of antimicrobial sensitivity assay showed altered sensitivity pattern in biofield treated clinical isolates of K. pneumonia. Aztreonam, cefotaxime, ceftazidime, and ceftriaxone sensitivity changed from EBL → R in LS 2 and LS 14. Sensitivity of amoxicillin/kclavulanate changed from S → R in LS 7 and LS 14, while S → IB and I → R in LS 2 and LS 6 respectively. Cefotetan and cefoxitin found changed sensitivity pattern from S → R in LS 7, and while S → IB in LS 2. Sensitivity of cefotetan changed from I → R in LS 6 while S → IB in LS 14. Chloramphenicol and imipenem sensitivity changed from S → R in LS 6. Although, in imipenem sensitivity changed from S → I in LS 6. Meropenem sensitivity changed from I → R and S → R in LS 6 and LS 7 respectively. An increase in sensitivity was reported in piperacillin/tazobactam and piperacillin i.e. from R → I in biofield treated LS 6 as compared to control. Although, piperacillin/tazobactam sensitivity changed from S → IB and S → I in LS 2 and LS 14 respectively. Ticarcillin/K-clavulanate sensitivity altered from S → I and S → R in LS 2 and LS 14 respectively (Table 1). Rest of antimicrobials did not show any change in sensitivity pattern after biofield treatment.
Determination of Minimum Inhibitory Concentration (MIC)
MIC values of all the clinical MDR isolates of control and biofield treated K. pneumoniae are summarized in Table 2. MIC values were decreased in case of piperacillin/tazobactam and piperacillin in LS 6 isolate only, while in rest of the antimicrobials, MIC values were increased as compared to control. Overall, MIC results showed an alteration in 30% tested antimicrobials (i.e. nine out of thirty) after biofield treatment in clinical isolates of K. pneumoniae (Table 2 and Figure 1). A decreased in MIC values in piperacillin/tazobactam and piperacillin were reported along with increases antimicrobial sensitivity after biofield treatment (64 μg/ml) in LS 6. Current treatment strategy against K. pneumoniae infections preferably uses cefoperazone/ sulbactam, piperacillin/tazobactam, and imipenem antimicrobials [24]. Although, piperacillin/tazobactam antimicrobial agent is useful and preferred in neonatal infections caused due to K. pneumoniae [25]. Biofield treatment in clinical isolate (LS 6) significantly increased the sensitivity and decreased the MIC values of piperacillin/tazobactam and piperacillin. In Enterobacteriaceae family, the most prevalent mechanism of acquired resistance in β-lactam antibiotics (piperacillin/ tazobactam and piperacillin) are the production of β-lactamases [26]. Biofield treatment might act on enzymatic or genetic level which might affects the β-lactamases production that may lead to alter the sensitivity pattern of tested antimicrobials.
Biochemical and biotype number study
Biochemical study results of control and biofield treated groups are summarized in Table 3 and Figure 1. Results showed that overall 15.15% change in tested biochemical reactions among 4 treated MDR clinical isolates of K. pneumoniae as compared to control. Cetrimide changed from (-) negative to (+) positive reaction in LS 6, LS 7, and LS 14 as compared to control. Voges-Proskauer changed from (+) positive to (-) negative reaction in LS 2, LS 6, and LS 7. Indole changed from (+) positive to (-) negative reaction in LS 7. Ornithine changed from negative (-) to positive (+) reaction in LS 14. Rest of biochemicals did not show any alteration in their reaction after biofield treatment. Voges- Proskauer, citrate, arabinose, lysine, glucose, sucrose, malonate are the standard positive reaction biochemical tests of K. pneumoniae while hydrogen sulfide, indole, ornithine and cetrimide are the standard negative reaction test. Biochemical reactions of control MDR isolates of K. pneumoniae were well supported with literature data [27]. Based on the biochemical results, significant alteration in biotype numbers were observed in all the four biofield treated lab isolates i.e. LS 2, LS 6, LS 7, and LS 14 as compared to control. New organism was identified as Enterobacter aerogenes in LS 2 and LS 14 after biofield treatment on day 10 with respect to control (Table 4). Biofield treatment as an alternate and complementary medicine, increasingly used in biomedical health care system such as reduction in pain and anxiety [28]. However, National Center for Complementary and Alternative Medicine/National Institute of Health (NCCAM/NIH), now defined biofield therapies in subcategory of energy therapies as one of the five complementary medicine domain [29]. Mr. Trivedi’s biofield treatment in pathogenic microbes were extensively studied and had shown significant alteration in the antimicrobial sensitivity pattern, biochemical reactions, and biotype number [18,19]. Biofield treatment might be responsible to do alteration in microorganism at genetic level and/or enzymatic level, which may act on receptor protein. While altering receptor protein, ligand-receptor/protein interactions may also alter that could lead to show different phenotypic characteristics. Hence a cascade of intra-cellular signals may be initiated, accelerated or inhibited [30]. The overall observations showed that, biofield treatment on MDR isolates of K. pneumoniae induced significant alteration in antimicrobial susceptibility pattern, MIC values, biochemical reactions, and biotype number.
Overall data conclude that there has a significant impact of biofield treatment on antimicrobial susceptibility pattern, MIC values, biochemical reactions, and biotype number in all the four clinical MDR lab isolates of K. pneumoniae. Based on the study outcome, biofield treatment could be applied to alter the sensitivity pattern of antimicrobials, against multi-drug resistance isolates of K. pneumoniae.
Authors gratefully acknowledged the whole team of PD Hinduja National Hospital and MRC, Mumbai, Microbiology Lab for conducting experimental studies. Authors would also thankful to Trivedi Science™, Trivedi Master Wellness™ and Trivedi Testimonials for their generous support in experimental works.
Conflict of Interest
The authors declare that they have no competing interest.

Tables at a glance

Table icon Table icon Table icon Table icon
Table 1 Table 2 Table 3 Table 4


Figures at a glance

Figure 1
Select your language of interest to view the total content in your interested language
Share This Article
Relevant Topics
Disc Advanced Therapies
Disc Adverse Health Effects
Disc African Trypanosomiasis
Disc Alzheimers Disease
Disc Chagas Disease
Disc Chicken Pox
Disc Chikungunya Virus
Disc Colon Infection
Disc Community Based Nursing
Disc Community Health Nursing Care
Disc Community Nursing
Disc Community Nursing Care
Disc Community Nursing Diagnosis
Disc Community Nursing Intervention
Disc Conjunctivitis
Disc Core Functions Of Public Health Nursing
Disc Dengue
Disc Ebola Disease
Disc Emerging Infectious Diseases
Disc Epidemiology
Disc Fifths Disease
Disc Genetic Factors
Disc H1N1 (Swine flu) Virus
Disc HIV and AIDS Research
Disc Hand Foot and Mouth Disease
Disc Health Care System
Disc Health Effects
Disc Health Equity
Disc Health Hazard
Disc Health Professional
Disc Health Risk
Disc Helminths
Disc Herpes Virus
Disc History Of Public Health Nursing
Disc Human Health Safety
Disc Human Papilloma Virus
Disc Hygiene
Disc Infection
Disc Infection in Blood
Disc Infections Prevention
Disc Infectious Diseases in Children
Disc Influenza
Disc Kawasaki Disease
Disc Legionnaires Disease
Disc Malaria
Disc Neglected Tropical Diseases
Disc Noncommunicable Diseases
Disc Nursing Public Health
Disc Nutrition Policies
Disc Onchocerciasis
Disc Parasitism
Disc Processed Food
Disc Public Health Nursing
Disc Respiratory Tract Infections
Disc Risk Factors And Burnout And Public Health Nursing
Disc Risk Factors and Burnout and Public Health Nursing
Disc Safety Programs
Disc Salmonella Typhi
Disc Sexually Transmitted Infections
Disc Staphylococcus Aureus
Disc Statistical Significance
Disc T Cell Lymphomatic Virus
Disc TB-HIV Coinfection
Disc Tetanus
Disc Treatment for Infectious Diseases
Disc Tropical Biomedicine
Disc Tropical Diseases
Disc Tropical Fish Diseases
Disc Tropical Fish Medicine
Disc Tropical Health Nutrition
Disc Tropical Medicine
Disc Tropical Medicine Case Reports
Disc Tropical Medicine Research
Disc Tropical Medicine and Health
Disc Tropical Medicine and Hygiene
Disc Tropical Medicine and Infectious Diseases
Disc Tropical Medicine and Parasitology
Disc Tropical Veterinary Medicine
Disc Vector Borne Diseases
Disc Viral Encephalitis
Disc Yeast Infection
Recommended Journals
Disc Public Health and Safety
Disc Community & Public Health Nursing
Disc Infectious Diseases and Therapy Journal
Disc Tropical Medicine & Surgery
  View More»
Recommended Conferences
Disc World Congress on Community Nursing-2016
June 20-22, 2016 Cape Town, South Africa
Disc 5th Global Microbiologists Conference
Aug 15-17, 2016 Portland, USA
Disc  10th Global Nursing & Healthcare conference
August 18-20, 2016 São Paulo, Brazil
Disc 6th Global Healthcare and Fitness Summit
August 22-24, 2016 Philadelphia, USA
Disc 2nd Annual Congress and Medical Expo on Primary Care
September 19-21, 2016 Phoenix, USA
Disc 4th Epidemiology and Public Health Conference
Oct 03-05, 2016 London, UK
Disc  15th Euro Nursing & Medicare Summit
October 17-19, 2016 Rome, Italy
Disc Hepatitis and Liver Diseases Congress
Oct 17-19, 2016, Dubai, UAE
Disc 10th International Conference on Nursing and Healthcare
December 05-07, 2016 Dallas, USA
Article Tools
Disc Export citation
Disc Share/Blog this article
Article usage
  Total views: 11773
  [From(publication date):
December-2015 - May 25, 2016]
  Breakdown by view type
  HTML page views : 7986
  PDF downloads :3787

Post your comment

captcha   Reload  Can't read the image? click here to refresh

OMICS International Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
OMICS International Conferences 2016-17
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2016 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version